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1. Introduction

In this note we investigate the problem of testing whether an
observed dataset satisfies a particular micro-economic property
known as the Collective Axiom of Revealed Preference. More
concrete, consider a two-member household that operates in an
economy with N goods. At times t = 1, 2, . . . , T , the household
purchases a certain quantity of each of the goods qt ∈ RN

+
(also

known as a bundle), at corresponding prices pt ∈ RN
++
. We refer to

a pair of N-vectors (pt , qt) as an observation, and we call the set of
observations S = {(pt , qt) : t ∈ T ≡ {1 . . . , T }} the dataset.
It is well known that in the case of a single decision-maker,

testing properties like the Weak Axiom of Revealed Preference
(WARP), the Strong Axiom of Revealed Preference (SARP) and
the Generalized Axiom of Revealed Preference (GARP) can be
done efficiently (Varian, 1982). Here, we show that testing the
Collective Axiom of Revealed Preference for a dataset originating
from a household consisting of two decision-makers, leads to a
computationally difficult problem.
The Collective Axiom of Revealed Preference (CARP) provides

a testable, nonparametric, necessary and sufficient condition for
a collective rationalization of the dataset. CARP was introduced
in Cherchye et al. (2007); we refer to Cherchye et al. (2008)
and Talla Nobibon et al. (forthcoming) and the references therein
for detailed discussions of CARP. In Section 2 we state the rules
defining CARP. The purpose of this note is to show that testing
whether a given dataset S satisfies CARP is NP-complete and this is
done in Section 3; we conclude in Section 4.
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2. Problem description and notation

Following micro-economic theory, we assume that each of the
two members of the household has a (hypothetical) preference
relation over bundles. This preference relation is denoted by H10
for member 1, and H20 for member 2. Furthermore, the phrase
‘‘(qs, qt) ∈ H i0’’means thatwehypothesize thatmember i (directly)
prefers the bundle qs over the bundle qt ; for i ∈ {1, 2} and s, t ∈
T. Notice that (qs, qt) is an ordered pair. Next, H i (i ∈ {1, 2})
represents the transitive closure of H i0, that is (qs, qt) ∈ H

i means
that there exists a (possibly empty) sequence u, v, . . . , z ∈ Twith
(qs, qu) ∈ H i0, (qu, qv) ∈ H

i
0,. . . , and (qz, qt) ∈ H

i
0. Thus given H

i
0 for

i ∈ {1, 2}, the transitive closures H i follow. For ease of exposition,
the scalar product pt · qt (which is the amount of money spent in
observation t) is written as ptqt .
Given this notion of hypothetical preference relations, CARP is

defined as follows (see Cherchye et al. (2007)).

Definition 1 (CARP). Given is a dataset S = {(pt , qt) : t ∈ T}. S
satisfies CARP if there exist hypothetical relations H10 and H

2
0 that

satisfy for all s, t, t1, t2 ∈ T:

Rule 1: if psqs ≥ psqt then either (qs, qt) ∈ H10 or (qs, qt) ∈ H
2
0 ;

Rule 2: if psqs ≥ psqt and (qt , qs) ∈ Hm then (qs, qt) ∈ H`0 with
` 6= m;

Rule 3: if psqs ≥ ps(qt1+qt2) and (qt1 , qs) ∈ H
m then (qs, qt2) ∈ H

`
0

with ` 6= m;
Rule 4: if psqs > psqt then either (qt , qs) 6∈ H1 or (qt , qs) 6∈ H2;
Rule 5: if psqs > ps(qt1 + qt2) then either (qt1 , qs) 6∈ H1 or

(qt2 , qs) 6∈ H
2.
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An inequality of the form psqs ≥ ps(qt1 + qt2) (or of the form
psqs > ps(qt1 + qt2)) is called a double-sum inequality.
Rule 1 states that, if the bundle qs was chosen while the bundle

qt was equally attainable (under the prices ps), then it must be
that at least one member prefers the bundle qs over the bundle qt
(i.e. (qs, qt) ∈ H10 or (qs, qt) ∈ H

2
0 ). Rule 2 states that, if memberm

prefers qt over qs while the bundle qt is notmore expensive than qs
against prices ps (i.e. psqs ≥ psqt ), thenmember ` prefers qs over qt .
Rule 3 states that, if the summed bundle qt1 + qt2 is attainable and
memberm prefers qt1 over qs, then the other member (member `)
prefers qs over qt2 . Rule 4 states that, if qt was cheaper when qs
was chosen, then it cannot be that both members prefer qt over
qs. Finally, Rule 5 states that, if qt1 + qt2 was cheaper when qs was
chosen, then it cannot be that onemember prefers qt1 over qswhile,
at the same time, the other member prefers qt2 over qs.
The problem of testing whether a given dataset S satisfies CARP

can be phrased as the following decision problem.
INSTANCE: A dataset S = {(pt , qt) : t ∈ T}.
QUESTION: Does the dataset satisfies CARP? In other words, do
there exist H10 and H

2
0 such that Rules 1–5 are satisfied?

In the next section, we prove that the problem of testing CARP is
NP-complete.

3. Complexity result

In this section we prove that testing CARP is NP-complete. The
proof uses a reduction from theNot-All-Equal-3Sat problem,which
is defined as follows.
INSTANCE: Set X = {x1, . . . , xn} of n variables, collection C =
{C1, . . . , Cm} of m clauses over X such that each clause C` ∈ C has
|C`| = 3.
QUESTION: Is there a truth assignment for X such that each clause
in C has at least one true literal and at least one false literal?
Garey and Johnson (1979) proved that the Not-All-Equal-3Sat
problem is NP-complete.
In the proof, we consider instances of the Not-All-Equal-3Sat

problem where no variable occurs more than once in the same
clause. This is without loss of generality, since, given an instance
of Not-All-Equal-3Sat where a clause contains the same variable
twice, we can simplify that clause to get a clause with two distinct
variables. By appropriately adding a newvariable and a new clause,
we can transform that instance into an instance of the Not-All-
Equal-3Sat problem where no variable occurs more than once in
the same clause. As illustration, the clause (x1 ∨ x2 ∨ x2) can be
replaced by (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x̄3).
The idea behind the proof is the following: for each variable and

for each clause of the Not-All-Equal-3Sat instance, we build a set
of observations. Each of these observations concerns a number of
goods; in particular, we have a price-vector, and a quantity-vector
for each observation. By choosing appropriate values for the prices
and the quantities, we establish for each pair and for each triple of
observations the inequality desired. Next, the implications for the
hypothetical relationsH10 andH

2
0 inducedbyRules1–5 are such that

their existence is equivalent to the instance of the Not-All-Equal-
3Sat problem being satisfiable.
Our result:

Theorem 1. Testing whether a given dataset S satisfies CARP is
NP-complete.

The proof of this theorem is structured as follows. First, we
build a dataset S given the instance of Not-All-Equal-3Sat. Next,
we enumerate for each pair of observations (s, t) and for each
triple of observations (s, t1, t2) whether an inequality of the form
psqs ≥ psqt (or psqs > psqt ), or of the form psqs ≥ ps(qt1 + qt2) (or
psqs > ps(qt1 + qt2)) is present. This is described in Claims 1 and 2.

Third, we argue the equivalence of a yes-instance of Not-All-Equal-
3Sat and the dataset S satisfying CARP. For the sake of simplicity,
throughout this text we will also call t ∈ T an observation while
referring to (pt , qt).
Notice that it is not hard to see that the problem of testing CARP

is in the class NP: given the relations H10 and H
2
0 ; (and hence H

1

and H2) we simply check, for each pair or triple of observations,
whether Rules 1–5 hold. Clearly, this can be done in polynomial
time.
In the first step of the proof, we aim at building the dataset S.

We shall first determine the set T of indices of observations. Next,
we derive the number of goods in the economy and finally, for each
observation, we derive a vector containing the price (respectively
quantity) of each good for that observation.
Consider an arbitrary instance of the Not-All-Equal-3Sat

problem where no variable occurs more than once in the same
clause. We build the set of observations as follows. For each
variable xi ∈ X (i = 1, . . . , n), we have two observations specified
by xi and x̄i, where the latter refers to the negation of xi. We define
T1 = {xi, x̄i : i = 1, . . . , n} with cardinality |T1| = 2n. The
observations in T1 are called variable observations.
For each clause C` = (χ `1 ∨ χ

`
2 ∨ χ

`
3 ) ∈ C , where the

literal χ `1 is either the variable xi or its negation x̄i, χ
`
2 is either

xj or x̄j, and χ `3 is either xk or x̄k with 1 ≤ i < j < k ≤
n (this ordering of indices can be achieved by permuting some
literals), we define six observations T`2 = {χ

`
1 , χ

`
2 , χ

`
3 , t

`
1 , t

`
2 , t

`
3}.

The first three observations in T`2 are called literal observations.
The last three observations in T`2 are associated observations; each
associated observation is associated to a literal observation. In
particular, t`1 is associated with χ

`
1 , t

`
2 with χ

`
2 and t

`
3 with χ

`
3 .

Let T2 = ∪ml=1 T`2 with |T2| = 6m. The observations in T2 are
called clause observations. That is, a clause observation is either a
literal observation or an associated observation. In total, the set
of observations T = T1 ∪ T2 contains T = |T| = 2n + 6m
observations.
To illustrate the reduction, we consider the following example

of Not-All-Equal-3Sat problem, subsequently referred to as the
example. The set of variables is X = {x1, x2, x3}, and there are two
clauses C1 = (x1 ∨ x2 ∨ x3) and C2 = (x̄1 ∨ x2 ∨ x̄3); that is
χ11 = x1, χ

1
2 = x2, χ

1
3 = x3, χ

2
1 = x̄1, χ

2
2 = x2 and χ

2
3 = x̄3.

Notice that the truth assignment x1 = x2 = 1 and x3 = 0 is
a solution to this Not-All-Equal-3Sat instance. For the example,
the variable observations are {x1, x̄1, x2, x̄2, x3, x̄3}while the clause
observations are {χ11 , χ

1
2 , χ

1
3 , t

1
1 , t

1
2 , t

1
3 } for the first clause, and

{χ21 , χ
2
2 , χ

2
3 , t

2
1 , t

2
2 , t

2
3 } for the second clause. The reduction leads to

a set of observations T = {x1, x̄1, x2, x̄2, x3, x̄3, χ11 , χ
1
2 , χ

1
3 , t

1
1 , t

1
2 ,

t13 , χ
2
1 , χ

2
2 , χ

2
3 , t

2
1 , t

2
2 , t

2
3 }with 18 elements.

To further describe the dataset S, we need to fix the number
of goods in each bundle, and for each observation in T, we must
specify the price and the quantity of each good. We consider an
economy with N = 2T 2 goods. We now specify the price and
the quantity of the N goods for each observation in T. For ease
of exposition, a bundle of N = 2T 2 goods is represented by two
blocks, each block being a T × T matrix. Each cell in each block
represents a good.
We index the rows and columns of the first T × T matrix

(referred to as Block 1 in the rest of this text) by the observations
in T. We use, both for the rows and for the columns, the
following ordering: x1, x̄1, x2, x̄2, . . . , xn, x̄n, χ11 , χ

1
2 , χ

1
3 , t

1
1 , t

1
2 , t

1
3 ,

χ21 , χ
2
2 , χ

2
3 , t

2
1 , t

2
2 , t

2
3 , . . ., χ

m
1 , χ

m
2 , χ

m
3 , t

m
1 , t

m
2 , t

m
3 . For the example,

Block 1 is represented in Table 1.
We use the same indices for naming the rows and columns of

the second T × T matrix (subsequently called Block 2 throughout
this text). Hence, we can identify a good by specifying a pair (s, t)
where s is the row-index (an observation), and where t is the
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Table 1
Block 1 for the example.

x1 x̄1 x2 x̄2 x3 x̄3 χ11 χ12 χ13 t11 t12 t13 χ21 χ22 χ23 t21 t22 t23

x1

x̄1

x2

x̄2

x3

x̄3

χ11

χ12

χ13

t11

t12

t13

χ21

χ22

χ23

t21

t22

t23

column-index (also an observation), and by specifying the block
(either Block 1 or Block 2).
For each variable xi ∈ X , we define

Γxi = {` ∈ {1, . . . ,m} : clause C` ∈ C contains literal xi}.

Similarly,

Γx̄i = {` ∈ {1, . . . ,m} : clause C` ∈ C contains literal x̄i}.

Further, let

∆ = 1+max{8,max{2|Γxi | + 4 : i = 1, . . . , n},
max{2|Γx̄i | + 4 : i = 1, . . . , n}},

(where |A| is the cardinality of A). For the example, we have Γx1 =
{1} as x1 appears only in the clause C1, Γx̄1 = {2} because x̄1 is
present only in C2, Γx2 = {1, 2}, Γx̄2 = ∅, Γx3 = {1}, Γx̄3 = {2} and
∆ = 9. Since wewant to avoid prices equal to 0, we use, in the rest
of this text, ε to denote a very small, strictly positive, real number.
Next, for each observation in T we will determine the price, as

well as the quantity of each good.Wewill do this by distinguishing
eight types of observations:

• variable observations corresponding to positive (negative)
literals. The vector of prices for that observation is denoted by
pxi (px̄i ), and the bundle (purchased quantities) is denoted by qxi
(qx̄i ); for i = 1, . . . , n.
• clause observations corresponding to the first (second, third)
literal. The vector of prices for that observation is denoted
by pχ`1 (pχ`2 , pχ`3 ), and the bundle by qχ`1 (qχ`2 , qχ`3 ); for ` =
1, . . . ,m.
• associated observations corresponding to the first (second,
third) literal. The vector of prices for that observation is denoted
by pt`1 (pt`2 , pt`3 ), and the bundle by qt`1 (qt`2 , qt`3 ); for ` = 1, . . . ,m.

Choosing the particular values of the prices and the quantities is
done with the objective of satisfying some inequalities for pairs or
triples of observations. In fact, for each pair of observations (s, t),

there are two goods: one in Block 1 and one in Block 2. The good in
Block 1 is used to ensure that the desired inequality between psqs
and psqt holds. The good in Block 2 is used to enforce the presence
or absence of a double-sum inequality involving psqs and psqt . All
this is achieved by choosing appropriate values for the price and
the quantity of each good.
We now continue by describing how the prices of all goods

for all observations are set. That is, for each cell in each of the
two blocks forming the set of all goods, we fix a strictly positive
real value, representing the price. To achieve this, we proceed as
follows. For each of the two blocks, we specify the structure of the
corresponding matrix by giving a value to each cell representing
theprice of the good corresponding to that cell.Wedo this for every
observation in T.
Specifying pxi , px̄i , pχ`1 , pχ`2 , pχ`3 , pt`1 , pt`2 , pt`3 for goods corresponding
to cells in Block 1.
For each observation s ∈ T, there is a row in Block 1 indexed by

s. We set the price of each good corresponding to a cell in this row
equal to 1, except for the price of the good corresponding to cell
(s, s): its price equals 2. The goods corresponding to the remaining
cells in Block 1 get the price ε.
As an illustration, consider the observation x̄2 of the example.

The price of goods corresponding to cells in Block 1 is given by
Table 2.
Specifying pxi for goods corresponding to cells in Block 2.
Given a clauseC` that contains x̄i (negation of xi), let r denote the

position of x̄i in the clause C`. Of course, r ∈ {1, 2, 3} (notice that r
depends upon ` and i; for reasons of convenience we simply write
r instead of r(i, `)). Thus, for each clause C`with ` ∈ Γx̄i , there is an
associated observation t`r inT. The price of the good corresponding
to cell (x̄i, t`r ) equals

1
2|Γx̄i |

. Also, the price of the good corresponding

to cell (t`r , x̄i) equals
1

2|Γx̄i |
. This is done for each clause C` with

` ∈ Γx̄i . Notice that in total, we have 2|Γx̄i | cells with value
1

2|Γx̄i |

in this block (Block 2). The goods corresponding to the remaining
cells in Block 2 get the price ε.
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Table 2
Price of goods corresponding to cells in Block 1 for observation x̄2 .

x1 x̄1 x2 x̄2 x3 x̄3 χ11 χ12 χ13 t11 t12 t13 χ21 χ22 χ23 t21 t22 t23

x1 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε

x̄1 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε

x2 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε

x̄2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

x3 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε

x̄3 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε

χ11 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε

χ12 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε

χ13 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε

t11 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε

t12 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε

t13 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε

χ21 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε

χ22 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε

χ23 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε

t21 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε

t22 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε

t23 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε

As an illustration, consider the observation x2 of the example.
Since Γx̄2 = ∅, the price of all goods corresponding to cells in
Block 2 is ε.
Specifying px̄i for goods corresponding to cells in Block 2.
We use an approach similar to the one used to determine pxi .

Now, let r denote the position of xi in the clause C`. For each clause
C` with ` ∈ Γxi , there is an associated observation t

`
r . The price of

the good corresponding to cell (xi, t`r ) equals
1

2|Γxi |
. Also, the price

of the good corresponding to cell (t`r , xi) equals
1

2|Γxi |
. This is done

for each clause C` with ` ∈ Γxi . The goods corresponding to the
remaining cells in Block 2 get the price ε.
As an illustration, consider the observation x̄2 of the example.

The prices of goods corresponding to cells in Block 2 are given in
Table 3. Notice that there are four goods with price 14 .
Specifying pχ`1 for goods corresponding to cells in Block 2.
There are two goods corresponding to cells in Block 2 that have

a price different from ε. These are the goods corresponding to the
two cells (χ `3 , t

`
3) and (t

`
3 , χ

`
3 ); the price for these goods equals

1
2 .

The goods corresponding to the remaining cells in Block 2 get the
price ε.
As an illustration, consider the example. For ` = 1 we have

χ `1 = x1 and the twogoodswith price
1
2 correspond to cells (χ

1
3 , t

1
3 )

and (t13 , χ
1
3 ). The goods corresponding to the remaining cells in

Block 2 get the price ε. For ` = 2, the goods corresponding to cells
(χ23 , t

2
3 ) and (t

2
3 , χ

2
3 ) get the price

1
2 ; the goods corresponding to

the remaining cells in Block 2 get the price ε.
Specifying pχ`2 for goods corresponding to cells in Block 2.

Again, there are two goods that have price 12 , namely those
corresponding to the cells (χ `1 , t

`
1) and (t`1 , χ

`
1 ). The goods

corresponding to the remaining cells in Block 2 get the price ε.
As an illustration, consider the example. For ` = 1 we have

χ `2 = x2 and the twogoodswith price
1
2 correspond to cells (χ

1
1 , t

1
1 )

and (t11 , χ
1
1 ). The goods corresponding to the remaining cells in

Block 2 get the price ε. For ` = 2, the goods corresponding to cells

(χ21 , t
2
1 ) and (t

2
1 , χ

2
1 ) get the price

1
2 ; the goods corresponding to

the remaining cells in Block 2 get the price ε.
Specifying pχ`3 for goods corresponding to cells in Block 2.

Also here, there are two goods with price 1
2 , namely those

corresponding to the cells (χ `2 , t
`
2) and (t`2 , χ

`
2 ). The goods

corresponding to the remaining cells in Block 2 get the price ε.
As an illustration, consider the example. For ` = 1 we have

χ `3 = x3 and the twogoodswith price
1
2 correspond to cells (χ

1
2 , t

1
2 )

and (t12 , χ
1
2 ). The goods corresponding to the remaining cells in

Block 2 get the price ε. For ` = 2, the goods corresponding to cells
(χ22 , t

2
2 ) and (t

2
2 , χ

2
2 ) get the price

1
2 ; the goods corresponding to

the remaining cells in Block 2 get the price ε.
Specifying pt`1 for goods corresponding to cells in Block 2.

Recall that the observation t`1 is associated with the literal
observationχ `1 . Further, the literalχ

`
1 is either xi or x̄i for a given i ∈

{1, . . . , n}. In both cases, there are only two goods corresponding
to cells in Block 2 that have price different from ε.
If χ `1 = xi, then the two goods of Block 2 with price 12 are
those corresponding to cells (χ `2 , x̄i) and (x̄i, χ

`
2 ). The goods

corresponding to the remaining cells in Block 2 get the price ε.
On the other hand, if χ `1 = x̄i, then the two goods of Block 2
corresponding to cells (χ `2 , xi) and (xi, χ

`
2 ) have price

1
2 . The

goods corresponding to the remaining cells in Block 2 get the
price ε.

As an illustration, consider the example. For ` = 1 the
observation t11 is such that the goods corresponding to cells (χ

1
2 , x̄1)

and (x̄1, χ12 ) in Block 2 have price
1
2 since χ

1
1 = x1. The goods

corresponding to the remaining cells in Block 2 get the price ε. For
` = 2, the goods corresponding to cells (χ22 , x1) and (x1, χ

2
2 ) in

Block 2 have price 12 for observation t
2
1 because χ

2
1 = x̄1. The goods

corresponding to the remaining cells in Block 2 get the price ε.
Specifying pt`2 for goods corresponding to cells in Block 2.

The observation t`2 is associated with χ
`
2 which is either xj or x̄j

for a given j ∈ {1, . . . , n}.
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Table 3
Price of goods corresponding to cells in Block 2 for observation x̄2 .

x1 x̄1 x2 x̄2 x3 x̄3 χ11 χ12 χ13 t11 t12 t13 χ21 χ22 χ23 t21 t22 t23

x1 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε

x̄1 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε

x2 ε ε ε ε ε ε ε ε ε ε 1
4 ε ε ε ε ε 1

4 ε

x̄2 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε

x3 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε

x̄3 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε

χ11 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε

χ12 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε

χ13 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε

t11 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε

t12 ε ε 1
4 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε

t13 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε

χ21 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε

χ22 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε

χ23 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε

t21 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε

t22 ε ε 1
4 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε

t23 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε

If χ `2 = xj, then the two goods of Block 2 with price 12 are
those corresponding to cells (χ `3 , x̄j) and (x̄j, χ

`
3 ). The goods

corresponding to the remaining cells in Block 2 get the price ε.
Otherwise, ifχ `2 = x̄j then the two goods of Block 2 correspond-
ing to cells (χ `3 , xj) and (xj, χ

`
3 ) have price

1
2 . The goods corre-

sponding to the remaining cells in Block 2 get the price ε.

As an illustration, consider the example. For ` = 1 the
observation t12 is such that the goods corresponding to cells (χ

1
3 , x̄2)

and (x̄2, χ13 ) in Block 2 have price
1
2 since χ

1
2 = x2. The goods

corresponding to the remaining cells in Block 2 get the price ε. For
` = 2, the goods corresponding to cells (χ23 , x̄2) and (x̄2, χ

2
3 ) in

Block 2 have price 12 for observation t
2
2 because χ

2
2 = x2. The goods

corresponding to the remaining cells in Block 2 get the price ε.
Specifying pt`3 for goods corresponding to cells in Block 2.

The observation t`3 is associated with χ
`
3 which is either xk or x̄k

for a given k ∈ {1, . . . , n}.

Ifχ `3 = xk, the two goods of Block 2with price
1
2 are those corre-

sponding to cells (χ `1 , x̄k) and (x̄k, χ
`
1 ). The goods corresponding

to the remaining cells in Block 2 get the price ε.
If, on the other hand,χ `3 = x̄k then the two goods of Block 2 cor-
responding to cells (χ `1 , xk) and (xk, χ

`
1 ) have price

1
2 . The goods

corresponding to the remaining cells in Block 2 get the price ε.

As an illustration, consider the example. For ` = 1 the
observation t13 is such that the goods corresponding to cells (χ

1
1 , x̄3)

and (x̄3, χ11 ) in Block 2 have price
1
2 since χ

1
3 = x3. The goods

corresponding to the remaining cells in Block 2 get the price ε. For
` = 2, the goods corresponding to cells (χ21 , x3) and (x3, χ

2
1 ) in

Block 2 have price 12 for observation t
2
3 because χ

2
3 = x̄3. The goods

corresponding to the remaining cells in Block 2 get the price ε.
This achieves the description of prices: for each observation in

T we have specified the price of every good in the bundle (that is
every cell in the two blocks). It remains to fix for each observation
in T the quantity used for each good in the bundle.

Specifying qxi for goods corresponding to cells in Block 1.
There is a row and a column in Block 1 indexed by xi. All

the goods corresponding to cells of Block 1 other than those
corresponding to cells in row xi and in column xi get the value 0
as their quantity. As for cells in row xi and column xi, the good
corresponding to cell (xi, xi) gets the value 1. The quantity of the
good corresponding to cell (xi, x̄i) equals 1, and the quantity of
the good corresponding to cell (x̄i, xi) equals the value |Γxi | +
1. Moreover, for every clause C` containing x̄i (` ∈ Γx̄i ), the
good corresponding to cell (xi, t`r ) gets the value 1, where r
denotes the position of x̄i in the clause C`. The quantity of the
good corresponding to cell (t`r , xi) equals 2. The remaining goods
corresponding to cells in row xi are not used and get the quantity
0, while those remaining in column xi get the value∆. Observe that
a good corresponding to a cell (xi, t) in row xi has a non-zero value
if and only if the corresponding to the cell (t, xi) in column xi has a
value different from (more precisely less than)∆.
As an illustration, consider the observation x1 of the example.

The quantity of goods corresponding to cells in Block 1 are given in
Table 4.
Specifying qx̄i for goods corresponding to cells in Block 1.
All goods corresponding to cells in Block 1 other than those

in row x̄i and in column x̄i get the value 0 as their quantity.
The good corresponding to cell (x̄i, x̄i) has quantity 1. Also, the
good corresponding to cell (x̄i, xi) has quantity 1, and the good
corresponding to cell (xi, x̄i) has quantity |Γx̄i |+1. For every clause
C` containing xi (` ∈ Γxi ), the good corresponding to cell (x̄i, t

`
r )

has quantity 1 (where r refers to the position of xi in clause C`).
The good corresponding to cell (t`r , x̄i) has quantity 2. For the goods
corresponding to the remaining cells in row x̄i, their quantity is 0,
while the goods corresponding to the remaining cells in column x̄i
have quantity∆.
As an illustration, consider the observation x̄2 of the example.

The quantity of goods corresponding to cells in Block 1 are given in
Table 5.
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Table 4
Quantity of goods corresponding to cells in Block 1 for observation x1 .

x1 x̄1 x2 x̄2 x3 x̄3 x11 x12 x13 t11 t12 t13 x̄21 x22 x̄23 t21 t22 t23

x1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

x̄1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x2 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x̄2 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x3 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x̄3 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x11 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x12 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x13 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

t11 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

t12 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

t13 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x̄21 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x22 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x̄23 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

t21 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

t22 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

t23 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 5
Quantity of goods corresponding to cells in Block 1 for observation x̄2 .

x1 x̄1 x2 x̄2 x3 x̄3 x11 x12 x13 t11 t12 t13 x̄21 x22 x̄23 t21 t22 t23

x1 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x̄1 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x̄2 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0

x3 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x̄3 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x11 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x12 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x13 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0

t11 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0

t12 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

t13 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x̄21 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x22 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x̄23 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0

t21 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0

t22 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

t23 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Specifying qχ`1 for goods corresponding to cells in Block 1.
All goods corresponding to cells in Block 1 that are neither in

rowχ `1 nor in columnχ
`
1 have quantity 0. The goods corresponding

to cells (χ `1 , χ
`
1 ), (χ

`
1 , χ

`
2 ), (χ

`
1 , χ

`
3 ) and (χ

`
1 , t

`
3) in row χ

`
1 have

quantity 1. The good corresponding to cell (χ `2 , χ
`
1 ) gets a quantity

of 4, that corresponding to cell (χ `3 , χ
`
1 ) receives a quantity of 6

while the good corresponding to cell (t`3 , χ
`
1 ) has quantity 2. For

the goods corresponding to the remaining cells in row χ `1 , their
quantity is 0, while those corresponding to the remaining cells in
column χ `1 have quantity∆.
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Specifying qχ`2 for goods corresponding to cells in Block 1.

All goods corresponding to cells in Block 1 neither in row χ `2
nor in column χ `2 have quantity 0. The goods corresponding to
cells (χ `2 , χ

`
2 ), (χ

`
2 , χ

`
1 ), (χ

`
2 , χ

`
3 ) and (χ

`
2 , t

`
1) have quantity 1.

The good corresponding to cell (χ `1 , χ
`
2 ) has a quantity of 6 and

that corresponding to cell (χ `3 , χ
`
2 ) gets a quantity 4, while the

good corresponding to cell (t`1 , χ
`
2 ) has quantity 2. For the goods

corresponding to the remaining cells in row χ `2 , their quantity is
0, while those corresponding to the remaining cells in column χ `2
have quantity∆.
Specifying qχ`3 for goods corresponding to cells in Block 1.

All goods corresponding to cells in Block 1 neither in row χ `3
nor in columnχ `3 have quantity 0. The goods corresponding to cells
(χ `3 , χ

`
3 ), (χ

`
3 , χ

`
1 ), (χ

`
3 , χ

`
2 ) and (χ

`
3 , t

`
2)have quantity 1. In column

χ `3 , the good corresponding to cell (χ
`
1 , χ

`
3 ) has a quantity of 4,

that corresponding to cell (χ `2 , χ
`
3 ) has a quantity of 6 while the

good corresponding to cell (t`2 , χ
`
3 ) has quantity 2. For the goods

corresponding to the remaining cells in row χ `3 , their quantity is
0, while those corresponding to the remaining cells in column χ `3
have quantity∆.
Specifying qt`1 for goods corresponding to cells in Block 1.
All goods corresponding to cells in Block 1 that are neither in

row t`1 nor in column t
`
1 have quantity 0. Since t

`
1 is associated to

χ `1 which is either xi or x̄i for a given i ∈ {1, . . . , n}, we distinguish
two cases.

If χ `1 = xi, then the goods corresponding to cells (t`1 , t
`
1),

(t`1 , χ
`
2 ) and (t

`
1 , x̄i) have quantity 1. In column t

`
1 , the good

corresponding to cell (χ `2 , t
`
1) has quantity 3, while the good

corresponding to cell (x̄i, t`1) has quantity |Γxi | + 1. The goods
corresponding to the remaining cells in row t`1 have quantity 0,
while those corresponding to the remaining cells in column t`1
have quantity∆.
If, on the other hand, χ `1 = x̄i then the goods corresponding
to cells (t`1 , t

`
1), (t

`
1 , χ

`
2 ) and (t

`
1 , xi) have quantity 1. In column

t`1 , the good corresponding to cell (χ
`
2 , t

`
1) has quantity 3, while

the good corresponding to cell (xi, t`1) has quantity |Γx̄i | + 1.
The goods corresponding to the remaining cells in row t`1 have
quantity 0, while those corresponding to the remaining cells in
column t`1 have quantity∆.

Specifying qt`2 for goods corresponding to cells in Block 1.
All goods corresponding to cells in Block 1 that are neither in

row t`2 nor in column t
`
2 have quantity 0. Since t

`
2 is associated to

χ `2 which is either xj or x̄j for a given j ∈ {1, . . . , n}, we distinguish
two cases.

Ifχ `2 = xj, then the goods corresponding to cells (t
`
2 , t

`
2), (t

`
2 , χ

`
3 )

and (t`2 , x̄j) have quantity 1. The good corresponding to cell
(χ `3 , t

`
2) has quantity 3, while the good corresponding to cell

(x̄j, t`2) has quantity |Γxj | + 1. The goods corresponding to the
remaining cells in row t`2 have quantity 0, while those corre-
sponding to the remaining cells in column t`2 have quantity∆.
Otherwise, if χ `2 = x̄j then the goods corresponding to cells
(t`2 , t

`
2), (t

`
2 , χ

`
3 ) and (t

`
2 , xj) have quantity 1. In column t

`
2 , the

good corresponding to cell (χ `3 , t
`
2) has quantity 3, while the

good corresponding to cell (xj, t`2) has quantity |Γx̄j | + 1. The
goods corresponding to the remaining cells in row t`2 have quan-
tity 0, while those corresponding to the remaining cells in col-
umn t`2 have quantity∆.

Specifying qt`3 for goods corresponding to cells in Block 1.
All goods corresponding to cells in Block 1 that are neither in

row t`3 nor in column t
`
3 have quantity 0. Since t

`
3 is associated to

χ `3 which is either xk or x̄k for a given k ∈ {1, . . . , n}, we distinguish
two cases.

If χ `3 = xk then the goods corresponding to cells (t`3 , t
`
3),

(t`3 , χ
`
1 ) and (t

`
3 , x̄k) have quantity 1. In column t

`
3 , the good

corresponding to cell (χ `1 , t
`
3) has quantity 3, while the good

corresponding to cell (x̄k, t`3) has quantity |Γxk | + 1. The goods
corresponding to the remaining cells in row t`3 have quantity 0,
while those corresponding to the remaining cells in column t`3
have quantity∆.
Otherwise, if χ `3 = x̄k, then the goods corresponding to cells
(t`3 , t

`
3), (t

`
3 , χ

`
1 ) and (t

`
3 , xk) have quantity 1. In column t

`
3 , the

good corresponding to cell (χ `1 , t
`
3) has quantity 3, while the

good corresponding to cell (xk, t`3) has quantity |Γx̄k | + 1. The
goods corresponding to the remaining cells in row t`3 have
quantity 0, while those corresponding to the remaining cells in
column t`3 have quantity∆.

We now proceed with the quantities of the goods correspond-
ing to cells in Block 2.
Specifying qxi for goods corresponding to cells in Block 2.
The goods corresponding to cells in Block 2 that have a non-ε

price get the quantity |Γx̄i | + 1 while those with ε price get the
value 0 as quantity.
As an illustration, consider the observation x2 of the example.

For that observation, all the goods corresponding to cells in Block 2
get the price ε. Therefore, all the goods corresponding to cells in
Block 2 have quantity 0.
Specifying qx̄i for goods corresponding to cells in Block 2.
The goods corresponding to cells in Block 2 have quantity |Γxi |+

1, if their price in that observation is different from ε; otherwise
their quantity equals 0.
Specifying qχ`1 , qχ`2 , qχ`3 for goods corresponding to cells in Block 2.
For goods corresponding to cells in Block 2, the following holds:

if the price of such a good in some observation is ε, then the
quantity of that good for that observation is 0, otherwise the
quantity is 3.
Specifying qt`1 , qt`2 , qt`3 for goods corresponding to cells in Block 2.
For goods corresponding to cells in Block 2, the following holds:

if the price of such a good in some observation is ε, then the
quantity of that good for that observation is 0, otherwise the
quantity is 2.
This completes the description of the quantity of each good

in the bundle for every observation in T. Thus, we have built the
dataset S. Notice that this construction of S is done in polynomial
time.
The second step of our proof identifies some characteristics of

the dataset S constructed above; these are the inequalities and
double-sum inequalities satisfied by the vectors of quantity and
price of observations. Our goal is to compare for each pair s, t
(respectively triple s, t1, t2) of observations the quantities psqs and
psqt (respectively psqs and ps(qt1 + qt2)).

Claim 1. Given the dataset S defined above, we have the following
inequalities.

For each i = 1, . . . , n,

pxiqxi > pxiqx̄i , (1)
px̄iqx̄i > px̄iqxi . (2)
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For each ` = 1, . . . ,m,

pχ`1 qχ`1 > pχ`1 qχ`2 , (3)

pχ`1 qχ`1 > pχ`1 qχ`3 , (4)

pχ`1 qχ`1 > pχ`1 qt`3 , (5)

pχ`2 qχ`2 > pχ`2 qχ`1 , (6)

pχ`2 qχ`2 > pχ`2 qχ`3 , (7)

pχ`2 qχ`2 > pχ`2 qt`1 , (8)

pχ`3 qχ`3 > pχ`3 qχ`1 , (9)

pχ`3 qχ`3 > pχ`3 qχ`2 , (10)

pχ`3 qχ`3 > pχ`3 qt`2 . (11)

For each ` = 1, . . . ,m, for each i = 1, . . . , n with χ `1 = xi or
χ `1 = x̄i
pt`1qt`1 > pt`1qχ`2 , (12)

pt`1qt`1 >

{
pt`1qx̄i if χ `1 = xi,
pt`1qxi if χ `1 = x̄i,

(13)

px̄iqx̄i > px̄iqt`1 if χ `1 = xi,
pxiqxi > pxiqt`1 if χ `1 = x̄i.

}
(14)

For each ` = 1, . . . ,m, for each j = 1, . . . , n with χ `2 = xj or
χ `2 = x̄j
pt`2qt`2 > pt`2qχ`3 , (15)

pt`2qt`2 >

{
pt`2qx̄j if χ `2 = xj,
pt`2qxj if χ `2 = x̄j,

(16)

px̄jqx̄j > px̄jqt`2 if χ `2 = xj,
pxjqxj > pxjqt`2 if χ `2 = x̄j.

}
(17)

For each ` = 1, . . . ,m, for each k = 1, . . . , n with χ `3 = xk or
χ `3 = x̄k
pt`3qt`3 > pt`3qχ`1 , (18)

pt`3qt`3 >

{
pt`3qx̄k if χ `3 = xk,
pt`3qxk if χ `3 = x̄k,

(19)

px̄kqx̄k > px̄kqt`3 if χ `3 = xk,
pxkqxk > pxkqt`3 if χ `3 = x̄k.

}
(20)

For all other pair s, t of distinct observations in T

psqs < psqt . (21)

Claim 2. Given the dataset S defined above, the following double-sum
inequalities hold.
For each ` = 1, . . . ,m,

pχ`1 qχ`1 > pχ`1 (qχ`3 + qt`3 ), (22)

pχ`2 qχ`2 > pχ`2 (qχ`1 + qt`1 ), (23)

pχ`3 qχ`3 > pχ`3 (qχ`2 + qt`2 ). (24)

For each ` = 1, . . . ,m, for each i = 1, . . . , n with χ `1 = xi or
χ `1 = x̄i

pt`1qt`1 >

{
pt`1 (qχ`2 + qx̄i) if χ `1 = xi,
pt`1 (qχ`2 + qxi) if χ `1 = x̄i,

(25)

px̄iqx̄i > px̄i(qxi + qt`1 ) if χ `1 = xi,
pxiqxi > pxi(qx̄i + qt`1 ) if χ `1 = x̄i.

}
(26)

For each ` = 1, . . . ,m, for each j = 1, . . . , n with χ `2 = xj or
χ `2 = x̄j

pt`2qt`2 >

{
pt`2 (qχ`3 + qx̄j) if χ `2 = xj,
pt`2 (qχ`3 + qxj) if χ `2 = x̄j,

(27)

px̄jqx̄j > px̄j(qxj + qt`2 ) if χ `2 = xj,
pxjqxj > pxj(qx̄j + qt`2 ) if χ `2 = x̄j.

}
(28)

For each ` = 1, . . . ,m, for each k = 1, . . . , n with χ `3 = xk or
χ `3 = x̄k

pt`3qt`3 >

{
pt`3 (qχ`1 + qx̄k) if χ `3 = xk,
pt`3 (qχ`1 + qxk) if χ `3 = x̄k,

(29)

px̄kqx̄k > px̄k(qxk + qt`3 ) if χ `3 = xk,
pxkqxk > pxk(qx̄k + qt`3 ) if χ `3 = x̄k.

}
(30)

For each i = 1, . . . , n and for each `, `′ ∈ Γx̄i with r and r
′ being

the position of x̄i in the clause C` and C`′ respectively,

pxiqxi > pxi(qt`r + qt`′r′
). (31)

For each i = 1, . . . , n and for each `, `′ ∈ Γxi with r and r
′ being

the position of xi in the clause C` and C`′ respectively,

px̄iqx̄i > px̄i(qt`r + qt`′r′
). (32)

There are no double-sum inequalities other than those mentioned
above.

The proofs of Claims 1 and 2 are given in the Appendices B and C.
In the last step of our proof, we prove that the dataset S

obtained by the above reduction satisfies CARP if and only if the
instance of the Not-All-Equal-3Sat problem is a YES-instance. The
goal here is to prove that the instance of CARP built from the
arbitrary instance of the Not-All-Equal-3Sat problem is at least as
hard as that instance of the Not-All-Equal-3Sat problem. This proof
strongly relies on Claims 1 and 2.
On the one hand, suppose that S satisfies CARP. Thus there exist

sets (hypothetical relations) H10 and H
2
0 that satisfy Rules 1–5. The

following is true for H10 and H
2
0 .

Lemma 1. If the dataset S satisfies CARP, then there are no two
distinct observations s and t satisfying psqs ≥ psqt such that
(qs, qt) ∈ H10 and (qs, qt) ∈ H

2
0 .

Proof. From the inequalities listed in Claim1,we observe that for a
pair of distinct observations s, t ∈ T, if psqs ≥ psqt then psqs > psqt
and ptqt > ptqs. Next, we argue by contradiction: if (qs, qt) ∈ H10
and (qs, qt) ∈ H20 then (qs, qt) ∈ H

1 and (qs, qt) ∈ H2. This,
however, contradicts Rule 4. Therefore, Lemma 1 holds. �

Wenowbuild a truth assignment for the instance of Not-All-Equal-
3Sat and show that it is a yes-instance. For each variable xi ∈ X we
set xi = 1 if (qxi , qx̄i) ∈ H

1
0 ; otherwise xi = 0. Thus, the value of

each xi is well defined. In fact, using (1) and Rule 1we conclude that
for each i, (qxi , qx̄i) ∈ H

1
0 or (qxi , qx̄i) ∈ H

2
0 . Since by construction,

xi = 1 corresponds to the case (qxi , qx̄i) ∈ H
1
0 , it follows that xi = 0

corresponds to the case (qxi , qx̄i) ∈ H
2
0 .

We now prove that each clause in C has at least one true literal
and at least one false literal. We argue by contradiction. Suppose
that there exists a clause C` = (χ `1 ∨ χ

`
2 ∨ χ

`
3 ) (` ∈ {1, . . . ,m})

in C which is such that either χ `1 = χ `2 = χ `3 = 1 or χ `1 =
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χ `2 = χ `3 = 0. Without loss of generality, let us assume that
χ `1 = χ `2 = χ `3 = 1. We are going to investigate each literal in
C` individually. The first literal χ `1 is either xi or x̄i. We will argue
that in both cases, we have (qt`1 , qχ`2 ) ∈ H

1
0 .

Indeed, if χ `1 = xi then xi = 1 implies that (qxi , qx̄i) ∈ H
1
0

from the assignment of values to variables. The double-sum
inequality (26) for the clause C` is px̄iqx̄i > px̄i(qxi + qt`1 ). Since

(qxi , qx̄i) ∈ H
1
0 , Rule 3 implies that (qx̄i , qt`1 ) ∈ H

2
0 . Using the

double-sum inequality pt`1qt`1 > pt`1 (qχ`2 + qx̄i) given by (25)

and the fact that (qx̄i , qt`1 ) ∈ H
2
0 , Rule 3 leads to (qt`1 , qχ`2 ) ∈ H

1
0 .

On the other hand, ifχ `1 = x̄i then x̄i = 1 implies that xi = 0 and
(qxi , qx̄i) ∈ H

2
0 . Using Rule 2 and (2) we obtain (qx̄i , qxi) ∈ H

1
0 .

The double-sum inequality (26) is pxiqxi > pxi(qx̄i + qt`1 ) and

(qx̄i , qxi) ∈ H
1
0 . Thus Rule 3 implies that (qxi , qt`1 ) ∈ H

2
0 . The

inequality (25) is pt`1qt`1 > pt`1 (qχ`2 + qxi) and (qxi , qt`1 ) ∈ H
2
0 ;

therefore (qt`1 , qχ`2 ) ∈ H
1
0 from Rule 3.

Since (qt`1 , qχ`2 ) ∈ H
1
0 we use the double-sum inequality pχ`2 qχ`2 >

pχ`2 (qχ`1+qt`1 ), (given by (23)) and Rule 3 to obtain that (qχ`2 , qχ`1 ) ∈

H20 . Finally, using Rule 2 and (8) we have (qχ`1 , qχ`2 ) ∈ H
1
0 .

We conclude that whether the literal χ `1 is xi or x̄i, as long as its
value equals 1we have (qχ`1 , qχ`2 ) ∈ H

1
0 . Notice that, in caseχ

`
1 = 0

we can conclude that (qχ`1 , qχ`2 ) ∈ H
2
0 .

By applying a similar reasoning to the second literal χ `2 , we
obtain (qχ`2 , qχ`3 ) ∈ H

1
0 , while the application of that reasoning

to the third literal χ `3 leads to (qχ`3 , qχ`1 ) ∈ H10 . We obtain

(qχ`1 , qχ`2 ) ∈ H
1
0 , (qχ`2 , qχ`3 ) ∈ H

1
0 and (qχ`3 , qχ`1 ) ∈ H

1
0 . Thus

(qχ`1 , qχ`2 ), (qχ`2 , qχ`3 ), (qχ`3 , qχ`1 ) ∈ H
1, which imply from Rule 2,

(4), (6) and (10) that (qχ`1 , qχ`2 ), (qχ`2 , qχ`3 ), (qχ`3 , qχ`1 ) ∈ H
2
0 . Thus

(qχ`1 , qχ`2 ) ∈ H
1
0 ∩ H

2
0 and χ

`
2 6= χ `1 . This contradicts Lemma 1.

This concludes the proof that if the dataset S satisfies CARP then
the instance of Not-All-Equal-3Sat is a yes-instance.
On the other hand, suppose that there is a truth assignment

for X which is such that each clause in C has at least one true
literal and at least one false literal. Consider H10 and H

2
0 defined as

follows. For each variable xi ∈ X , if xi = 1 then (qxi , qx̄i) ∈ H
1
0

and (qx̄i , qxi) ∈ H
2
0 . Otherwise, if xi = 0 then (qx̄i , qxi) ∈ H

1
0

and (qxi , qx̄i) ∈ H
2
0 . This ensures that for each pair of observations

(s, t) occurring in inequalities (1) or (2) the corresponding bundle
pair (qs, qt) is either in H10 or in H

2
0 . We now deal with pairs of

observations occurring in inequalities (3)–(20). We will specify
for each ordered pair of observations occurring in each of these
inequalities whether the corresponding bundle pair is in H10 or in
H20 . For every clause C` = (χ

`
1 ∨ χ

`
2 ∨ χ

`
3 ) in C , we consider each

literal in C` in turn. The construction ofH10 andH
2
0 for a given clause

C` is given in Table 6.
Table 6 displays two forms of symmetry. First, at the level of

a literal χ `i , i = 1, 2, 3 we observe that the set H
1
0 when χ

`
i = 1

equals the setH20 whenχ
`
i = 0. Second,when substituting x̄i (x̄j, x̄k)

for xi (xj, xk), and xi (xj, xk) for x̄i (x̄j, x̄k), the set H10 (respectively H
2
0 )

when χ `1 = xi (χ
`
2 = xj, χ

`
3 = xk) becomes the set H

2
0 (respectively

H10 ) when χ
`
1 = x̄i (χ

`
2 = x̄j, χ

`
3 = x̄k).

To complete the definition of H10 and H
2
0 , we set (qs, qs) ∈

H10 ∩ H
2
0 for every s ∈ T.

Remark 1. Notice that there is no pair of distinct observations
(s, t) such that psqs ≥ psqt and (qs, qt) ∈ H10 ∩ H

2
0 .

We next prove two properties of the sets H10 , H
2
0 , H

1 and H2
described above.

Property 1. For any pair of observations (s, t), if (qs, qt) ∈ H i and
psqs ≥ psqt then (qs, qt) ∈ H i0, for i = 1, 2.

Proof. Without loss of generality, suppose that (qs, qt) ∈ H1
with psqs ≥ psqt . We argue by contradiction; suppose that
(qs, qt) 6∈ H10 . Then by construction, (qs, qt) ∈ H20 . Since
(qs, qt) ∈ H20 , we have, by construction ofH

1
0 andH

2
0 , that (qt , qs) ∈

H10 . Further, since (qs, qt) ∈ H
1 there exists a sequence (non-

empty, because of Remark 1) of observations u, v, . . . , w such that
(qs, qu), (qu, qv), . . . , (qw, qt) are in H10 . By construction of H

1
0 and

H20 , however, this implies that (qt , qw), . . . , (qv, qu), (qu, qs) ∈
H20 . Together with the fact that (qs, qt) ∈ H20 and (qt , qs) ∈
H10 , we get (qs, qu), (qu, qv), . . . , (qw, qt), (qt , qs) ∈ H10 and
(qs, qt), (qt , qw), . . . , (qv, qu), (qu, qs) ∈ H20 . In other words, for
every observation a ∈ {s, t, u, . . . , w} there exist two observations
b and c in {s, t, u, . . . , w} such that (qa, qb) ∈ H10 and (qa, qc) ∈ H

2
0 .

It follows from the construction (see Table 6) that this can happen
only if a ∈ {χ `1 , χ

`
2 , χ

`
3 } for a given ` = 1, . . . ,m. Therefore,

s, t, u, . . . , w ∈ {χ `1 , χ
`
2 , χ

`
3 } for a given ` = 1, . . . ,m. The latter

result implies that the length of the sequence u, v, . . . , w is one
(suppose that the sequence contains only u) and we have (qs, qu)
and (qu, qt) in H10 . If, in addition (qt , qs) ∈ H

1
0 , then we have

(qχ`1 , qχ`2 ), (qχ`2 , qχ`3 ) and (qχ`3 , qχ`1 ) in H
1
0 , which is only possible

if the variables χ `1 , χ
`
2 and χ

`
3 are assigned the same value. Since

these three variables are in the same clause C`, this contradicts the
fact that we have a truth assignment that is a solution to the Not-
All-Equal-3Sat instance. �

Property 2. For any triple of observations (s, t1, t2) satisfying psqs ≥
ps(qt1 +qt2), the pair of bundles (qs, qt1) and (qs, qt2) are in the same
set H i0 for i = 1, 2.

Proof. It is not difficult to check this result from Table 6. �

We now prove that the hypothetical relations H10 and H
2
0 defined

above satisfy Rules 1–5.

Rule 1: This rule is satisfied because on the one hand, a pair of
distinct observations s, t in T occurring in psqs ≥ psqt is
identified by one of the inequalities (1)–(20) and therefore
is by construction either in H10 or in H

2
0 . On the other hand,

(qs, qs) ∈ H10 ∩ H
2
0 by construction.

Rule 2: Suppose that psqs ≥ psqt and (qt , qs) ∈ H1. We know by
construction that psqs ≥ psqt implies ptqt ≥ ptqs and
from Property 1 we have (qt , qs) ∈ H10 ; which implies
(qs, qt) ∈ H20 .

Rule 3: Suppose that psqs ≥ ps(qt1 + qt2) and (qt1 , qs) ∈ H
1.

Property 1 implies that (qt1 , qs) ∈ H10 and Property 2
implies that (qs, qt1) and (qs, qt2) are in the same set. Since
(qt1 , qs) ∈ H

1
0 , we conclude that (qs, qt2) ∈ H

2
0 .

Rule 4: This rule follows from the fact that H10 ∩ H
2
0 contains only

(qs, qs) where s is a given observation in T. Thus, for two
distinct observations s and t with psqs > psqt , (qs, qt) 6∈
H10 ∩ H

2
0 .

Rule 5: Suppose that there exist s, t1, t2 ∈ T such that psqs >
ps(qt1 + qt2) and (qt1 , qs) ∈ H

1. Then (qt1 , qs) ∈ H
1
0 from

Property 1 and (qs, qt2) ∈ H
2
0 from Property 2. Therefore

(qt2 , qs) 6∈ H
2
0 because of Lemma 1.

This concludes the proof that if the instance of the Not-All-Equal-
3Sat is a yes-instance then the dataset S satisfies CARP.
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Table 6
Construction of H10 and H

2
0 for a given clause C` .

χ `1 = xi χ `1 = x̄i
xi = 1 Ineq. xi = 0 Ineq. xi = 1 Ineq. xi = 0 Ineq.

H10

(qxi , qx̄i ) (1) (qx̄i , qxi ) (2) (qxi , qx̄i ) (1) (qx̄i , qxi ) (2)
(qt`1 , qx̄i ) (13) (qx̄i , qt`1 ) (14) (qxi , qt`1 ) (14) (qt`1 , qxi ) (13)
(qt`1 , qχ`2 ) (12) (qχ`2 , qt`1 ) (8) (qχ`2 , qt`1 ) (8) (qt`1 , qχ`2 ) (12)
(qχ`1 , qχ`2 ) (3) (qχ`2 , qχ`1 ) (6) (qχ`2 , qχ`1 ) (6) (qχ`1 , qχ`2 ) (3)

H20

(qx̄i , qxi ) (2) (qxi , qx̄i ) (1) (qx̄i , qxi ) (2) (qxi , qx̄i ) (1)
(qx̄i , qt`1 ) (14) (qt`1 , qx̄i ) (13) (qt`1 , qxi ) (13) (qxi , qt`1 ) (14)
(qχ`2 , qt`1 ) (8) (qt`1 , qχ`2 ) (12) (qt`1 , qχ`2 ) (12) (qχ`2 , qt`1 ) (8)
(qχ`2 , qχ`1 ) (6) (qχ`1 , qχ`2 ) (3) (qχ`1 , qχ`2 ) (3) (qχ`2 , qχ`1 ) (6)

χ `2 = xj χ `2 = x̄j
xj = 1 Ineq. xj = 0 Ineq. xj = 1 Ineq. xj = 0 Ineq.

H10

(qxj , qx̄j ) (1) (qx̄j , qxj ) (2) (qxj , qx̄j ) (1) (qx̄j , qxj ) (2)
(qt`2 , qx̄j ) (16) (qx̄j , qt`2 ) (17) (qxj , qt`2 ) (17) (qt`2 , qxj ) (16)
(qt`2 , qχ`3 ) (15) (qχ`3 , qt`2 ) (11) (qχ`3 , qt`2 ) (11) (qt`2 , qχ`3 ) (15)
(qχ`2 , qχ`3 ) (7) (qχ`3 , qχ`2 ) (10) (qχ`3 , qχ`2 ) (10) (qχ`2 , qχ`3 ) (7)

H20

(qx̄j , qxj ) (2) (qxj , qx̄j ) (1) (qx̄j , qxj ) (2) (qxj , qx̄j ) (1)
(qx̄j , qt`2 ) (17) (qt`2 , qx̄j ) (16) (qt`2 , qxj ) (16) (qxj , qt`2 ) (17)
(qχ`3 , qt`2 ) (11) (qt`2 , qχ`3 ) (15) (qt`2 , qχ`3 ) (15) (qχ`3 , qt`2 ) (11)
(qχ`3 , qχ`2 ) (10) (qχ`2 , qχ`3 ) (7) (qχ`2 , qχ`3 ) (7) (qχ`3 , qχ`2 ) (10)

χ `3 = xk χ `3 = x̄k
xk = 1 Ineq. xk = 0 Ineq. xk = 1 Ineq. xk = 0 Ineq.

H10

(qxk , qx̄k ) (1) (qx̄k , qxk ) (2) (qxk , qx̄k ) (1) (qx̄k , qxk ) (2)
(qt`3 , qx̄k ) (19) (qx̄k , qt`3 ) (20) (qxk , qt`3 ) (20) (qt`3 , qxk ) (19)
(qt`3 , qχ`1 ) (18) (qχ`1 , qt`3 ) (5) (qχ`1 , qt`3 ) (5) (qt`3 , qχ`1 ) (18)
(qχ`3 , qχ`1 ) (9) (qχ`1 , qχ`3 ) (4) (qχ`1 , qχ`3 ) (4) (qχ`3 , qχ`1 ) (9)

H20

(qx̄k , qxk ) (2) (qxk , qx̄k ) (1) (qx̄k , qxk ) (2) (qxk , qx̄k ) (1)
(qx̄k , qt`3 ) (20) (qt`3 , qx̄k ) (19) (qt`3 , qxk ) (19) (qxk , qt`3 ) (20)
(qχ`1 , qt`3 ) (5) (qt`3 , qχ`1 ) (18) (qt`3 , qχ`1 ) (18) (qχ`1 , qt`3 ) (5)
(qχ`1 , qχ`3 ) (4) (qχ`3 , qχ`1 ) (9) (qχ`3 , qχ`1 ) (9) (qχ`1 , qχ`3 ) (4)

4. Conclusion

This text proves that the problem of testing the Collective
Axiom of Revealed Preference (CARP) is NP-complete even for
two-member household. This result justifies the enumerative
approaches that are used in Cherchye et al. (2008) and the heuristic
approaches used in Talla Nobibon et al. (forthcoming) to test a
given dataset for CARP.
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Appendix A. Scalar product of observations in T

In this section, we derive the value of the scalar product psqt for
each pair of observations s and t in T.
In what follows, we first specify the quantity psqt for every pair

of observations s and t in T. The symbol∼= is used to mean that the
value reported of psqt is the limit when ε tends to 0 of the exact
value. We consider five cases.
Case 1. Both observations are variable observations; that is s, t ∈
{x1, x̄1, . . . , xn, x̄n}.
Below, we distinguish eight types of combinations as follows:

How to compute pxiqxi when s = t = xi with i = 1, . . . , n.
Notice that the scalar product pxiqxi is not affected by goods
corresponding to cells with quantity zero. Further, as we take
the limit when ε tends to zero, only goods corresponding to
cells in Block 1 and in Block 2 with price different from ε

are considered. In Block 1, this restriction allows to consider
only goods corresponding to cells in row xi. The quantity pxiqxi
contains a part coming from the good corresponding to cell
(xi, xi) in Block 1. This accounts for 2× 1 = 1 in pxiqxi since the
price is 2 and the quantity is 1. Looking at the vector of quantity,
the good corresponding to cell (xi, x̄i) has a quantity of one and
contributes for 1 × 1 = 1 in pxiqxi . Moreover, we know that
for every clause C` with ` ∈ Γx̄i , the good corresponding to
cell (xi, t`r ) in row xi gets the value one (here, r ∈ {1, 2, 3} is
the position of x̄i in the clause C`). Thus each such good adds
the value of one to pxiqxi and there are |Γx̄i | such goods. There
are no additional value coming from the goods corresponding
to the remaining cells in Block 1. In total, goods corresponding
to cells in Block 1 contribute for 2+1+|Γx̄i | in pxiqxi . For goods
corresponding to cells in Block 2, we know by construction that
there are 2 × |Γx̄i | goods with price

1
2×|Γx̄i |

and the quantity of
|Γx̄i | + 1. Therefore, if Γx̄i 6= ∅ then the goods corresponding to

cells in Block 2 contribute for 2×|Γx̄i |
(

1
2×|Γx̄i |

× (|Γx̄i | + 1)
)
=

|Γx̄i | + 1. Notice that if Γx̄i = ∅ then that contribution is zero.
Putting together the contribution of goods corresponding to
cells in Block 1 and in Block 2, we obtain pxiqxi ∼= 2+1+|Γx̄i |+
|Γx̄i | + 1 = 2|Γx̄i | + 4 if Γx̄i 6= ∅ and pxiqxi ∼= 2 + 1 if Γx̄i = ∅.
Therefore,

pxiqxi ∼=
{
3 if Γx̄i = ∅
2|Γx̄i | + 4 if Γx̄i 6= ∅.

(33)

How to compute px̄iqx̄i when s = t = x̄i with i = 1, . . . , n.
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Following the procedure above, the scalar product

px̄iqx̄i ∼=
{
3 if Γxi = ∅
2|Γxi | + 4 if Γxi 6= ∅.

(34)

How to compute pxiqx̄i when s = xi and t = x̄i with i = 1, . . . , n.
To compute the scalar product pxiqx̄i , observe that goods
corresponding to cells in Block 2 do not affect that scalar
product. In fact, for the observation xi, the only goods in Block 2
with price different from ε corresponding to cells either in row
x̄i or in column x̄i while the goods of observation x̄i in Block 2
with non-zero quantity corresponding to cells either in row xi
or in column xi. Therefore, the scalar product pxiqx̄i is based on
goods corresponding to cells in Block 1. In that block, only goods
corresponding to cells in row xi are interesting as they have a
non-ε price. However, for observation x̄i the only good in row xi
of Block 1 with non-zero quantity corresponding to cell (xi, x̄i)
with quantity |Γx̄i | + 1. This implies that

pxiqx̄i ∼= |Γx̄i | + 1. (35)

How to compute px̄iqxi when s = x̄i and t = xi with i = 1, . . . , n.
An analysis following the reasoning used above leads to

px̄iqxi ∼= |Γxi | + 1. (36)

How to compute pxiqxj when s = xi and t = xj with i, j ∈
{1, . . . , n}, i 6= j.
We are not going to compute pxiqxj but we will rather provide a
lower bound to pxiqxj . Notice that the scalar product pxiqxj is at
least as large as the contribution of good corresponding to cell
(xi, xj) in Block 1. The latter good contributes 1×∆ = ∆ to pxiqxj
because the cell (xi, xj) is in the column xj and in that column,
the observation xj is such that only goods corresponding to cells
(xj, xj), (x̄j, xj) and (t`r , xj) where the clause C` contains x̄j (r
being the position of x̄j in C`), have quantity different from ∆.
Therefore

pxiqxj ≥ ∆. (37)

How to compute px̄iqxj when s = x̄i and t = xj with i, j ∈
{1, . . . , n}, i 6= j.
Similarly, px̄iqxj is greater than or equal to ∆ using the same
reasoning as above. Thus,

px̄iqxj ≥ ∆. (38)

How to compute pxiqx̄j when s = xi and t = x̄j with i, j ∈
{1, . . . , n}, i 6= j.
The quantity pxiqx̄j is at least as large as the contribution

of the good corresponding to cell (xi, x̄j) in Block 1. That
contribution is 1×∆ = ∆. Therefore

pxiqx̄j ≥ ∆. (39)

How to compute px̄iqx̄j when s = x̄i and t = x̄j with i, j ∈
{1, . . . , n}, i 6= j.
The quantity px̄iqx̄j is at least as large as the contribution of
the good corresponding to cell (x̄i, x̄j) in Block 1. However, that
good contributes for 1×∆ = ∆. Therefore

px̄iqx̄j ≥ ∆. (40)

Case 2. Both observations are clause observations, correspond-
ing to some clause C` with ` = 1, . . . ,m.
This means that s, t ∈ {χ `1 , χ

`
2 , χ

`
3 , t

`
1 , t

`
2 , t

`
3}. There are 36

possibilities listed below.

How to compute pχ`1 qχ`1 , pχ`2 qχ`2 and pχ`3 qχ`3 .
Consider the scalar product pχ`1 qχ`1 . It is neither affected by
goods corresponding to cells with quantity zero nor by goods

corresponding to cells in Block 1 and Block 2 with price ε.
In Block 1, only goods corresponding to cells in row χ `1 are
considered. The quantity pχ`1 qχ`1 contains a part coming from

the goods corresponding to cells (χ `1 , χ
`
1 ), (χ

`
1 , χ

`
2 ), (χ

`
1 , χ

`
3 )

and (χ `1 , t
`
3) in Block 1. Each of these goods has a price of one and

a quantity of one except the good corresponding to cell (χ `1 , χ
`
1 )

which has a price of two and a quantity of one. Therefore,
they contribute 2 + 1 + 1 + 1 = 5 in pχ`1 qχ`1 . As for goods
corresponding to cells in Block 2, we know that there are two
goods corresponding to cells (χ `3 , t

`
3) and (t

`
3 , χ

`
3 ) with price

1
2

and quantity three. These two goods contribute 2( 12 × 3) = 3.
In total,

pχ`1 qχ`1
∼= 5+ 3 = 8. (41)

A similar analysis leads to

pχ`2 qχ`2
∼= 8 (42)

and

pχ`3 qχ`3
∼= 8. (43)

How to compute pχ`1 qχ`2 , pχ`2 qχ`3 and pχ`3 qχ`1 .
The scalar product pχ`1 qχ`2 is affected only by the good of Block 1

corresponding to cell (χ `1 , χ
`
2 ). In fact, this good is in row χ

`
1 ,

and therefore gets the price of one in observationχ `1 . Moreover,
the observationχ `2 uses six units of that good. It is not difficult to
see that the goods corresponding to the remaining cells in row
χ `1 of Block 1 get the quantity zero for observation χ

`
2 and the

goods (χ `3 , t
`
3) and (t

`
3 , χ

`
3 )which are the only goods of Block 2

with non-ε price for observation χ `1 have a quantity of zero for
observation χ `2 ; therefore do not contribute in pχ`1 qχ`2 . Thus

pχ`1 qχ`2
∼= 6. (44)

Similarly, we get

pχ`2 qχ`3
∼= 6 (45)

and

pχ`3 qχ`1
∼= 6. (46)

How to compute pχ`1 qχ`3 , pχ`2 qχ`1 and pχ`3 qχ`2 .
The scalar product pχ`1 qχ`3 is affected only by the good of

Block 1 corresponding to cell (χ `1 , χ
`
3 ). That good is in row χ

`
1

therefore gets the price of one for observationχ `1 . Moreover, the
observation χ `3 uses four units of that good. Thus

pχ`1 qχ`3
∼= 4. (47)

Similarly, we get

pχ`2 qχ`1
∼= 4 (48)

and

pχ`3 qχ`2
∼= 4. (49)

How to compute pt`1qt`1 , pt`2qt`2 and pt`3qt`3 .
The observation t`1 is associated to χ

`
1 . There are two options for

the literal χ `1 , either χ
`
1 = xi or χ

`
1 = x̄i.

If χ `1 = xi then the quantity pt`1qt`1 contains a part coming from

the goods corresponding to cells (t`1 , t
`
1), (t

`
1 , χ

`
2 ) and (t

`
1 , x̄i) in

Block 1. The first good has a price of two and a quantity of one,
while the two others have a price of one and a quantity of one.
Therefore, they account for 2+ 1+ 1 = 4 in pt`1qt`1 . In Block 2,

the two goods corresponding to cells (χ `2 , x̄i) and (x̄i, χ
`
2 )with

price 12 and quantity two are the only goods contributing to



Author's personal copy

134 F. Talla Nobibon, F.C.R. Spieksma / Mathematical Social Sciences 60 (2010) 123–136

pt`1qt`1 . They contribute for 2(
1
2 × 2) = 2. In sum, pt`1qt`1

∼=

4+ 2 = 6.
On the other hand, if χ `1 = x̄i then the quantity pt`1qt`1 contains

a part coming from the goods corresponding to cells (t`1 , t
`
1),

(t`1 , χ
`
2 ) and (t

`
1 , xi) in Block 1. As above, these goods account

for 2 + 1 + 1 = 4 in pt`1qt`1 . As for goods in Block 2, only two

goods corresponding to cells (χ `2 , xi) and (xi, χ
`
2 ) with price

1
2 and quantity two contribute to pt`1qt`1 . They contribute for

2( 12 × 2) = 2. In total, we obtain pt`1qt`1
∼= 4+ 2 = 6.

To summarize, whether χ `1 = xi or χ
`
1 = x̄i, we have

pt`1qt`1
∼= 6. (50)

We also obtain, using similar reasoning that

pt`2qt`2
∼= 6 (51)

and

pt`3qt`3
∼= 6. (52)

How to compute psqt when s, t ∈ {t`1 , t
`
2 , t

`
3} with s 6= t .

The scalar product psqt is greater than or equal to the
contribution of the good corresponding to cell (s, t) in Block 1.
However, the cell (s, t) being in row s of Block 1, it has the price
of one for observation s. But that cell is in column t in Block 1
and gets the value∆ as quantity. Therefore

psqt ≥ ∆. (53)

The set of inequalities (53) represents six values of psqt .
How to compute pχ`1 qt`3 , pχ`2 qt`1 and pχ`3 qt`2 .
The scalar product pχ`1 qt`3 is determined only by the good

corresponding to cell (χ `1 , t
`
3) in Block 1. This good has a price of

one for observation χ `1 and a quantity of three for observation
t`3 . Therefore, it accounts for 1 × 3 = 3 in pχ`1 qt`3 . Notice

that the good corresponding to cell (χ `1 , t
`
3) is the only good of

observation t`3 in row χ
`
1 of Block 1 with non-zero quantity. As

for goods corresponding to cells in Block 2, we know that the
two goods of observation t`3 in Block 2 with non-zero quantity
have the price of ε for observation χ `1 . Therefore,

pχ`1 qt`3
∼= 3. (54)

The following similar results hold

pχ`2 qt`1
∼= 3, (55)

pχ`3 qt`2
∼= 3. (56)

How to compute pt`3qχ`1 , pt`1qχ`2 and pt`2qχ`3 .
The scalar product pt`3qχ`1 is mainly determined by the good

corresponding to cell (t`3 , χ
`
1 ) in Block 1. This good has a price

of one for observation t`3 and a quantity of two for observation
χ `1 . Therefore, it accounts for 1× 2 = 2 in pt`3qχ`1 and

pt`3qχ`1
∼= 2. (57)

The following similar results hold.

pt`1qχ`2
∼= 2, (58)

pt`2qχ`3
∼= 2. (59)

How to compute psqt and ptqs when s ∈ {t`1 , t
`
2 , t

`
3}, t ∈

{χ `1 , χ
`
2 , χ

`
3 } and (s, t) 6∈

{
(t`1 , χ

`
2 ), (t

`
2 , χ

`
3 ), (t

`
3 , χ

`
1 )
}
, (t, s) 6∈{

(χ `2 , t
`
1), (χ

`
3 , t

`
2), (χ

`
1 , t

`
3)
}
.

The scalar product psqt is at least as large as the contribution
of the good corresponding to cell (s, t) in Block 1. However, the

cell (s, t) being in row s of Block 1, it has the price of one for
observation s. But that cell is in column t of Block 1 and gets the
value∆ as quantity for observation t . Therefore

psqt ≥ ∆. (60)

Similarly, we prove that

ptqs ≥ ∆. (61)

These are 12 additional scalar products; completing the
description of the 36 scalar products announced.

Case 3. One observation is a variable observation, the other is
a clause observation such that the corresponding clause does not
contain that variable.
This means one observation is in {χ `1 , χ

`
2 , χ

`
3 , t

`
1 , t

`
2 , t

`
3} from

clause C` = (χ `1∨χ
`
2∨χ

`
3 )while the other is a variable observation

xi or x̄i (i = 1, 2, . . . , n) which is such that xi or x̄i is not in
{χ `1 , χ

`
2 , χ

`
3 }. Let s ∈ {χ

`
1 , χ

`
2 , χ

`
3 , t

`
1 , t

`
2 , t

`
3} and t be a variable

observation satisfying the above condition.
How to compute ptqs and psqt .
The value of the scalar product ptqs is least as large as the
contribution of good corresponding to cell (t, s) in Block 1. Since
the price of that good equals 1, and its quantity equals∆, we get

ptqs ≥ ∆. (62)

Using similar arguments, we can prove that

psqt ≥ ∆. (63)

Case 4. One observation is a variable observation, the other is
a clause observation such that the corresponding clause contains
that variable.
This means one observation is in {χ `1 , χ

`
2 , χ

`
3 , t

`
1 , t

`
2 , t

`
3} from

clause C` = (χ `1∨χ
`
2∨χ

`
3 )while the other is a variable observation

xi or x̄i which is such that xi or x̄i is in {χ `1 , χ
`
2 , χ

`
3 }. Let s ∈

{χ `1 , χ
`
2 , χ

`
3 , t

`
1 , t

`
2 , t

`
3} and t be a variable observation satisfying the

above condition.
How to compute pxiqt`1 and pt`1qxi , when χ

`
1 = xi.

The value of the scalar product pxiqt`1 is at least as large as the

contribution of good corresponding to cell (xi, t`1) in Block 1.
Since the price of that good equals 1, and its quantity equals
∆, we get

pxiqt`1 ≥ ∆. (64)

Using similar arguments, we get

pt`1qxi ≥ ∆. (65)

Similar inequalities hold when χ `2 = xj and χ
`
3 = xk. These are

pxjqt`2 ≥ ∆, (66)

pt`2qxj ≥ ∆, (67)

pxkqt`3 ≥ ∆, (68)

pt`3qxk ≥ ∆. (69)

How to compute px̄iqt`1 and pt`1qx̄i when χ
`
1 = xi.

The scalar product px̄iqt`1 is not affected by goods corresponding
to cells in Block 2. The scalar product px̄iqt`1 is determined by

the good corresponding to cell (x̄i, t`1) in Block 1. That good has
a price of one and a quantity of |Γxi | + 1. Therefore, it accounts
for 1× (|Γxi | + 1) = |Γxi | + 1 in px̄iqt`1 . Hence,

px̄iqt`1
∼= |Γxi | + 1. (70)

The scalar product pt`1qx̄i is determined by the contribution of

good corresponding to cell (t`1 , x̄i) in Block 1. That good has a
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Table 7
Summary of scalar products with values less than∆.

Id. Product Value Proof

(A) pxiqxi =

{
3 if Γx̄i = ∅
2|Γx̄i | + 4 if Γx̄i 6= ∅

i = 1, . . . , n (33)

(B) px̄iqx̄i =

{
3 if Γxi = ∅
2|Γxi | + 4 if Γxi 6= ∅

i = 1, . . . , n (34)

(C) pxiqx̄i = |Γx̄i | + 1 i = 1, . . . , n (35)
(D) px̄iqxi = |Γxi | + 1 i = 1, . . . , n (36)
(E) pχ`r qχ`r = 8 ` = 1, . . . ,m, r = 1, 2, 3 (41)–(43)
(F) pt`r qt`r = 6 ` = 1, . . . ,m, r = 1, 2, 3 (50)–(52)
(G) pχ`i qχ`j = 6 ` = 1, . . . ,m, (i, j) ∈ {(1, 2), (2, 3), (3, 1)} (44)–(46)
(H) pχ`i qχ`j = 4 ` = 1, . . . ,m, (i, j) ∈ {(1, 3), (2, 1), (3, 2)} (47)–(49)
(I) pχ`i qt`j = 3 ` = 1, . . . ,m, (i, j) ∈ {(1, 3), (2, 1), (3, 2)} (54)–(56)
(J) pt`i qχ`j = 2 ` = 1, . . . ,m, (i, j) ∈ {(3, 1), (1, 2), (2, 3)} (57)–(59)

(K) px̄iqt`r = |Γxi | + 1 if χ
`
r = xi ` = 1, . . . ,m, r = 1, 2, 3, i = 1, . . . , n (70), (72) and (74)

(L) pt`r qx̄i = 2 if χ `r = xi ` = 1, . . . ,m, r = 1, 2, 3, i = 1, . . . , n (71), (73) and (75)
(M) pxiqt`r = |Γx̄i | + 1 if χ

`
r = x̄i ` = 1, . . . ,m, r = 1, 2, 3, i = 1, . . . , n (82), (84) and (86)

(N) pt`r qxi = 2 if χ `r = x̄i ` = 1, . . . ,m, r = 1, 2, 3, i = 1, . . . , n (83), (85) and (87)

price of one and a quantity of two. Thus,

pt`1qx̄i
∼= 2. (71)

The inequalities similar to those above hold for the pair of
observations t`2 and x̄j; and t

`
3 and x̄k when χ

`
2 = xj and χ

`
3 = xk.

There are given by

px̄jqt`2
∼= |Γxj | + 1, (72)

pt`2qx̄j
∼= 2, (73)

px̄kqt`3
∼= |Γxk | + 1, (74)

pt`3qx̄k
∼= 2. (75)

How to compute px̄iqt`1 and pt`1qx̄i when χ
`
1 = x̄i.

Inequalities similar to those obtainedwhen χ `1 = xi hold. These
are

px̄iqt`1 ≥ ∆, (76)

pt`1qx̄i ≥ ∆. (77)

If χ `2 = x̄j and χ
`
3 = x̄k then

px̄jqt`2 ≥ ∆, (78)

pt`2qx̄j ≥ ∆, (79)

px̄kqt`3 ≥ ∆, (80)

pt`3qx̄k ≥ ∆. (81)

How to compute pxiqt`1 and pt`1qxi when χ
`
1 = x̄i.

pxiqt`1
∼= |Γx̄i | + 1, (82)

pt`1qxi
∼= 2, (83)

pxjqt`2
∼= |Γx̄j | + 1, (84)

pt`2qxj
∼= 2, (85)

pxkqt`3
∼= |Γx̄k | + 1, (86)

pt`3qxk
∼= 2. (87)

How to compute pxiqt`r and px̄iqt`r when r ∈ {1, 2, 3} and χ
`
r 6∈

{xi, x̄i}.
The value of the scalar product pxiqt`r is least as large as the
contribution of good corresponding to cell (xi, t`r ) in Block 1.
Since the price of that good equals 1, and its quantity equals

∆, we get
pxiqt`r ≥ ∆. (88)

Similarly,
pt`r qxi ≥ ∆, (89)

px̄iqt`r ≥ ∆, (90)

and
pt`r qx̄i ≥ ∆. (91)

How to compute psqt and ptqs when s ∈ {χ `1 , χ
`
2 , χ

`
3 } and t is a

variable observation.
It is not difficult to prove that all these scalar products are at
least as large as∆. That is
psqt ≥ ∆ (92)

and
ptqs ≥ ∆. (93)

Case 5. Both observations are clause observations; one of them
from clause C`1 , the other from clause C`2 with `1 6= `2.
Let s ∈ {χ `11 , χ

`1
2 , χ

`1
3 , t

`1
1 , t

`1
2 , t

`1
3 } and t ∈ {χ

`2
1 , χ

`2
2 , χ

`2
3 , t

`2
1 ,

t`22 , t
`2
3 }. These are 36 pairs of observations (s, t).
How to compute psqt and ptqs.
It is not difficult to obtain the following lower bounds.
psqt ≥ ∆ (94)

and
ptqs ≥ ∆. (95)

Notice that for two distinct observations s and t in T, we have
psqt ≥ ∆ if and only if ptqs ≥ ∆.
In Table 7, we summarize the scalar products computed above

by presenting only those which have values less than∆.

Appendix B. Proof of Claim 1

In this section, we prove Claim 1.
We are now in a position to finish the proof of Claim 1. Here we

show how the inequalities identified by Claim 1 follow from the
scalar product computed in Appendix A.
The first set of inequalities (1) comes from (A) and (C) in Table 7.
The inequalities (2) stem from (B) and (D) in Table 7.
The inequalities (3), (7) and (9) stem from (E) and (G) in Table 7.
The inequalities (4), (6) and (10) stem from (E) and (H) in
Table 7.
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The inequalities (5), (8) and (11) stem from (E) and (I) in Table 7.
The inequalities (13), (16) and (19) stem from either (F) and (L)
or (F) and (N), in Table 7.
The inequalities (12), (15) and (18) stem from (F) and (J) in
Table 7.
The inequalities (14), (17) and (20) stem from either (B) and (K)
or (A) and (M), in Table 7.

The set of inequalities (21) come from the fact that for any other
pair of observations s, t ∈ T, the scalar product psqt is greater than
or equal to∆.

Appendix C. Proof of Claim 2

In this section, we prove Claim 2.
Here, we show how the double-sum inequalities described

by Claim 2 originate from the scalar products computed in
Appendix A. For every clause C` = (χ `1 ∨ χ

`
2 ∨ χ

`
3 ) ∈ C , ` ∈

{1, . . . ,m}with the given clause observations χ `1 , χ
`
2 , χ

`
3 , t

`
1 , t

`
2 and

t`3 , we have:

The double-sum inequalities (22)–(24) come from (E), (H) and
(I) in Table 7.

The inequalities (25), (27) and (29) stem from (F), (J) and either
(L) or (N) in Table 7.
The inequalities (26), (28) and (30) stem from either (B), (D) and
(K) or (A), (C) and (M) in Table 7.
The inequalities (31) stem from (A) and (M) and the inequalities
(32) from (B) and (K) in Table 7.

The non-existence of the other possible inequalities is justified
by the fact that for those inequalities, at least one scalar product
appearing in the right-hand side has a value greater than or equal
to∆.
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