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A GENERAL CLASS OF GREEDILY SOLVABLE
LINEAR PROGRAMS

MAURICE QUEYRANNE, FRITS SPIEKSMA, AND FABIO TARDELLA

A greedy algorithm solves a dual pair of linear programs where the primal variables are
associated to the elements of a sublattice B of a finite product lattice, and the cost coefficients
define a submodular function on B . This approach links and generalizes two well-known classes
of greedily solvable linear programs. The primal problem generalizes the (ordinary and multi-
index) transportation problems satisfying a Monge condition (Hoffman 1963; Bein et al. 1995)
to the case of forbidden cells where the nonforbidden cells form a sublattice. The dual problem
generalizes to an arbitrary finite product lattice the linear optimization problem over submodular
polyhedra (Lovász 1983; Fujishige and Tomizawa 1983), which stemmed from the work of
Edmonds (1970) on polymatroids. Our model and results also encompass the dual pairs of linear
programs and their greedy solutions defined by Lovász (1983) for the special case of the Boolean
algebra, and by Faigle and Kern (1996) for the case of so-called ‘‘rooted forests.’’ We also discuss
relationships between Monge properties and submodularity, and present a class of problems with
submodular costs arising in production and logistics.

1. Introduction. An important class of simple and efficient algorithms for optimiz-
ing a function f on a set S is the class of greedy (or myopic) algorithms. Since the work
of Edmonds (1970, 1971) on matroids and of Hoffman (1963) on transportation problems,
numerous authors have studied conditions on f and S which guarantee the convergence
of greedy algorithms to optimal solutions. In the case where f is linear and S is a poly-
hedron, two broad and well-known classes of linear programs have been shown to be
optimally solvable by a greedy algorithm. Following the work of Edmonds, the first class
includes optimization problems on polymatroids and related submodular polyhedra; see
Frank and Tardos (1988) and Fujishige’s monograph (Fujishige 1991) for in-depth stud-
ies. On the other hand, following the work of Hoffman, the second class includes trans-
portation problems, both ordinary and multi-index, with cost coefficients satisfying some
form of a so-called Monge condition (see Hoffman 1985, and Bein et al. 1995, for details) .

In this paper, we present a dual pair of linear programs, in which the variables are
associated with the elements in a sublattice of a discrete product lattice. We show that a
greedy algorithm solves both the primal program and the dual program when the cost
coefficients in the primal problem (or, equivalently, the right-hand sides in the dual prob-
lem) are given by a submodular function on the sublattice. The primal problem generalizes
the multi-index transportation problem of Bein et al. (1995) to the case of forbidden arcs,
where the nonforbidden cells form a sublattice. The dual problem generalizes the linear
optimization problems on submodular polyhedra by Lovász (1983) and Fujishige and
Tomizawa (1983) (which are extensions of the polymatroid optimization problem of
Edmonds 1971), to a distributive sublattice of a finite product space. Lovász considers a
similar pair of dual linear programs in the case of the Boolean algebra, and describes their
greedy solutions. A dual pair of linear programs, related to that in the present paper (see
§2 below for details) , is also presented by Faigle and Kern (1996).
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In addition to enlarging the class of linear programs solvable by a greedy algorithm,
our work also links heretofore separate streams of research and highlights the duality
relationship between (multi-index) transportation problems and linear optimization prob-
lems on submodular polyhedra. In particular, we observe that submodularity and the
Monge condition are the same concept expressed in different forms (see also Burkard et
al. 1996). Indeed, known results on lattices and submodular functions are independently
rediscovered in the context of the Monge condition for multi-dimensional arrays. Con-
versely, new results for Monge matrices also apply to submodular functions.

The content of this paper is as follows. In §2, we define the dual pair of linear programs
which is the object of this paper. We show how they generalize multi-index transportation
problems and linear optimization problems on submodular polyhedra and relate to the
submodular linear programs on a rooted forest by Faigle and Kern. In §3, we present the
greedy algorithm and prove that it produces optimal solutions to the primal and the dual
problems. In §4, we discuss relations between submodularity, the Monge condition for a
matrix and the existence of Monge sequences. Finally, in §5, we exhibit a class of problem
instances with a submodular cost function. These problem instances arise in some man-
ufacturing and logistics environments.

2. Lattices, submodular functions, and a dual pair of linear programs. Let the
integer k ¢ 2 denote the dimension of the product lattice defined below, and K 8 {1,
. . . , k}. For i √ K , let Ai be a totally ordered set (or chain) with m( i) / 1 elements. For
simplicity, we let Ai 8 {0, 1, . . . , m( i)}, with the usual total order 0õ 1õ ···õ m( i) ,
for all i √ K . The product space A 8 A1 1 A2 1 ··· 1 Ak is a distributive lattice with
join and meet operations defined by

a Û b 8 (max{a(1) , b(1)}, . . . , max{a(k) , b(k)})

and

a Ú b 8 (min{a(1) , b(1)}, . . . , min{a(k) , b(k)}) ,

respectively, where a and b are any elements of A . As is well known in lattice theory (see
references below), these operations induce the usual partial order ‘‘°’’ on this lattice A by

a ° b B a Å a Ú b (B b Å a Û b) .

The associated strict partial order ‘‘õ’’ is defined by a õ b if and only if a ° b and a
x b . The ‘‘dual’’ partial orders ‘‘¢’’ and ‘‘ú’’ are defined similarly. Let 0 8 (0, . . . ,
0) and m 8 (m(1) , . . . , m(k)) denote the smallest and largest element of A , respectively.

Let B denote any subset of A . For any i √ K and j √ Ai we define the section B( i , j)
of B at ( i , j) as B ( i , j) 8 {a √ B : a( i) Å j}. For any a √ A we define the ( lower)
truncation Ba of B at a as Ba 8 {b √ B : b ° a}. Element a √ B is minimal (resp.,
maximal) in B if no element b √ B satisfies b õ a (resp., b ú a) . Thus, a is minimal in
B if and only if the truncation Ba Å {a}.

A subset B of A is a sublattice if for every a , b √ B we have a Û b √ B and a Ú b
√ B . If B is a sublattice then the sections B( i , j) and the truncations Ba are also sublattices,
for all i √ K , j √ Ai and a √ A .

A real-valued function f : B ° R on a sublattice B is submodular if the following
submodular inequality

f (a Û b) / f (a Ú b) ° f (a) / f (b)
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holds for all a , b √ B . It is strictly submodular if this inequality is strict whenever a
Û b {a , b}. See, for example, Birkhoff (1967) for a general exposition of lattice/√
theory, and Topkis (1978), Veinott (1989) and Granot and Veinott (1985), and the
references therein, about product lattices, their sublattices, and submodular functions
(called ‘‘subadditive’’ functions in the latter reference) .

Let B be any subset of A and let B* 8 B" {0}. We associate a cost w(a) √ R with
every element a √ B*, and a nonnegative demand dij √ R/ with every section B( i , j)
where i √ K and j √ 8 Ai " {0}. The zero element in each chain may be used to*Ai

define a slack (or artificial) variable for the corresponding demand constraint in the primal
problem below. The zero elements are also convenient for modelling special cases of the
dual problem, as detailed later in this section.

We now formulate a dual pair of linear programs (P) and (D) :

min w(a)x∑ a

a√B*
(P)

*s.t. x Å d for i √ K and j √ A ;∑ a ij i

a√B( i, j)

x ¢ 0 for all a √ B*;a

and

max d y∑ ∑ ij ij
*i√K j√Ai

(D)

s.t. y ° w(a) for all a √ B*.∑ i ,a (i )

i√K
a ( i)x0

The linear programs (P ) and (D ) contain the following problems as special cases.

Multi-index transportation problems. A special case of the primal problem (P) just
defined is the following axial k-index transportation problem with forbidden arcs . The k
sets . . . , may be interpreted as sets of origins, destinations, types of goods, and* *A , A1 k

various related resources. Let B denote the subset of A* 8 1 ··· 1 consisting of* *A A1 k

nonforbidden (permissible) combinations a √ A*. With each section B( i , j) we associate
a nonnegative ‘‘demand’’ (which may be interpreted as a supply when is a set of*Ai

origins, and as a capacity when is a set of resources) . It is assumed that dij* *A (i j√Ai

Å D , a constant for all i √ K . With each element a √ B , often called an ‘‘arc,’’ we
associate a cost rate w(a) and a nonnegative decision variable xa representing the amount
of flow which will satisfy the ‘‘demand’’ for each origin, destination, type of good, etc.,
which form element a . The (axial) k-index transportation problem is to determine the
amount associated with each permissible arc a √ B so as to satisfy exactly the demand
of each section B( i , j) (for all i √ K and j √ at minimum total cost. This problem*A )i

may be formulated precisely as an instance of problem (P) .
The case where B Å A* (no forbidden arcs) is the axial multi-index transportation

problem defined by Haley (p. 376 in Haley 1962; see also Chapter 8 in Yemelichev et al.
1984, and the recent papers by Bein et al. 1995, and Queyranne and Spieksma 1997).
The axial k-index assignment problem arises when all m ( i) are equal to a constant m , all
demands are equal to 1, and all variables xa are restricted to be 0 or 1; see, e.g., Pierskalla
(1968) and Bandelt et al. (1994). When, in addition, k Å 3, we have the much studied
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(axial) three-index assignment problem ; see Frieze and Yadegar (1981), Balas and Saltz-
man (1989), and Crama and Spieksma (1992). The above references describe several
practical applications of these different models in such areas as logistics, automated pro-
duction, statistics, and course scheduling. (For work on nonaxial versions of multi-index
transportation problems, see Chapter 8 in Yemelichev et al. 1984, Korsnikov 1988, and
the references therein.)

Note that, in addition to offering a concise notation (compared with the above refer-
ences) , our formulation of problem (P) allows us quite naturally to exclude forbidden
arcs. Ordinary (i.e., 2-index) transportation problems with forbidden arcs were considered
by Shamir and Dietrich (1990) in connection with the existence of Monge sequences; see
§4 for details. Note also that we do not need to require in problem (P) that the total
demand dij be constant for all i √ K . Interpreting lattice elements a √ A* with some*(j√Ai

(but not all) component a( i) Å 0 as ‘‘slack variables,’’ problem (P) also allows some of
the constraints to be inequalities, and also to share common ‘‘slack’’ variables.

Submodular polyhedra. When m(i) Å 1 for all i √ K , the lattice A may be identified
with the lattice 2K of all subsets of K . Sublattices B are then (distributive) set lattices, and
submodular functions coincide with those now well known in combinatorial optimization
(see, e.g., Nemhauser and Wolsey 1988). Assuming w(M) Å 0, the constraints of problem
(D) are then precisely those which define a submodular polyhedron as in Fujishige (1991;
see also Frank and Tardos 1988). When B Å A Å 2K we have the problem which Lovász
(1983) shows to be solvable by a greedy algorithm. These polyhedra are closely related to
the polymatroids introduced by Edmonds (1971); see the preceding references for details.

Problem (D) properly generalizes these submodular polyhedra by allowing each chain Ai

in the lattice to contain any number of elements, giving rise to arbitrary (finite) product lattices.
This is akin to extending attention, in integer programming, from binary variables to general
integer-valued variables. We refer to the work of Topkis, Veinott, and Granot and Veinott
cited above for a description of some of the problems amenable to this broader framework.

Submodular linear programs on forests. Let PÅ (E ,°) be a poset with finite ground
set E , and let A be a set of subsets of E . For each I √ A denote by I/ the set of maximal
elements of I . In a paper (Faigle and Kern 1996) subsequent to the conference proceedings
version (Queyranne et al. 1993) of the present paper, Faigle and Kern define the following
linear program:

max c z∑ e e

e√E
(FK)

s.t. z ° f ( I) for all I √ A∑ e
/e√I

where c : E ° R is a given weight function, and f : A ° R is a given set function. Faigle
and Kern observe that, when the sublattice B coincides with the whole lattice A , problem
(D) defined above is a special case of (FK) , where poset P consists of the union of all
the disjoint chains We now show that, conversely, every problem of form (FK) can*A .i

be transformed into a special case of problem (D) .
We first note that in (FK) we can assume without loss of generality that A is a set of

order ideals of P . Recall that I ⊆ E is an order ideal of P if i ° j and j √ I imply i √ I ,
for all i , j √ E . Indeed, if A is not a set of order ideals of P then, for all I √ A, define Ĩ
as the smallest order ideal containing I . We may then replace A and f in (FK) with HA
Å { Ĩ : I √ A} and 8 min{ f ( J) : J √ A and J̃ Å Ĩ}, respectively. Accordingly, weHf ( HI)
shall assume henceforth that A is a set of order ideals of P .
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In much of their paper, Faigle and Kern assume that the set A is a lattice of order ideals
of P satisfying some additional condition, and that the poset P is a rooted forest. Recall
that a poset P is a rooted forest if every element in E has at most one upper neighbor
(immediate successor) .

PROPOSITION 2.1. For every instance of problem (FK) , there exists an instance of
problem (D) such that :

( i ) for every optimal solution y* to (D ) the vector z* defined by Å *z* ( ye i√K:e√A iei

for all e√ E is an optimal solution to (FK) and the objective values dy* and cz* coincide ;
and

( ii ) if P is a rooted forest and A is a lattice of order ideals of P , then B is a sublattice
of A and , furthermore , w is submodular if and only if f is submodular;
where K denotes the index set , A the product lattice , B ⊆ A the subset of lattice elements ,
and w the cost function in the resulting instance of problem (D) .

PROOF. Given an instance of (FK) , we first show how to construct the corresponding
instance of (D) . Add to P an element 0 with 0 ° e for all e √ E , and let P0 Å (E0 , °)
denote the resulting poset, where E0 8 E < {0}. Let A1 , . . . , Ak denote all the maximal
chains in P0 and K 8 {1, . . . , k}. Note that, for every i √ K and I √ A such that I/

> Ai is nonempty, this intersection consists of a single element, which we denote by aI( i) ;
if this intersection is empty, we let aI( i) Å 0. For every I √ A, we let aI 8 (aI(1) , . . . ,
aI(k)) , so aI √ A 8 A1 1 ··· 1 Ak . Consider the mapping f: A ° A defined by f(I)
8 aI . Since I/ , and therefore aI , uniquely defines the order ideal I , it follows that f is a
one-to-one ( injective ) mapping. Let B 8 f( A ) and define w : B ° R by w ( a )
8 f (f01(a)) . Finally, for all e √ E let die 8 ce for all i √ K such that e √ Ai . Problem
(FK) is then transformed into problem (D) by setting ze Å yie for all e √ E .(i√K:e√Ai

This implies the validity of statement (i) .
For (ii ) , now assume that P is a rooted forest and A is a lattice of order ideals of P .

For any ideal I √ A, let I0 8 I < {0}. We have aI( i) Å > Ai Å (I0 > Ai )/ for every/I 0

i √ K , where the last equality holds since P is a rooted forest. Furthermore, I0 > Ai is the
subchain [0, . . . , aI( i)]i of Ai formed by all elements e √ Ai such that 0 ° e ° aI( i) .
Hence, for all i √ K and order ideals I , J √ A,

/ /a ( i) Å ((I > J) > A ) Å ((I > A ) > (J > A ))(I>J) 0 i 0 i 0 i

/Å ([0, . . . , a ( i)] > [0, . . . , a ( i)] ) Å a ( i) Ú a ( i) ,I i J i I J

that is, f(I > J) Å f(I) Ú f(J) for all I , J √ A. In a similar manner one can prove that
f(I < J) Å f(I) Û f(J) for all I , J √ A. Therefore the mapping f is a lattice homo-
morphism between A and A and thus the image B of A is a sublattice of A . Furthermore,
it follows from the definition that the mapping w : B ° R defined above is submodular
on B whenever f is submodular on A. h

Note that, in the proof of Proposition 2.1, the size of the resulting instance of (D) is
polynomially bounded in (in fact, essentially identical to) the size of the given instance
of (FK) .

The Greedy Algorithm in the next section generalizes the North-West corner rule for
ordinary transportation problems and its multi-index extension due to Bein et al. It also
generalizes the greedy algorithms in Lovász and in Fujishige and Tomizawa for sub-
modular polyhedra, the latter two being themselves generalizations of that of Edmonds
for polymatroids. The greedy algorithm of the next section also applies to problem (FK)
under the assumptions of Proposition 2.1(ii ) .
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3. A greedy algorithm. We first describe the input and output of our algorithm for
problems (P) and (D) . Throughout this section, we assume that B is any sublattice of A
with 0 √ B , and that w(0) Å 0.

Input:
integer k the dimension of A;
integers m(1) , . . . , m(k) defining the range of each coordinate of A;

*reals d ¢ 0 demands, for all i √ K , j √ A ;ij i

oracle MAXLE describing sublattice B (see explanations below);
oracle w returning the value w(b) for any b √ B .

Output:
variable Status indicating the status, Feasible or Infeasible , of problem (P) ;

and if Status Å Feasible:
1 T

1 Tlist ((b , x ) , . . . , (b , x )) describing a primal solution (see below);b b

*reals y ¢ 0 describing a dual solution, for all i √ K and j √ A .ij i

The sublattice B might be presented in different ways, such as: A list of all elements
in B ( the permissible elements or cells) ; a list of all elements in A"B ( the forbidden
elements); collections of conditions (for example, monotone linear inequalities , see Vein-
ott 1989) characterizing permissible or forbidden elements; and so forth. However, to
achieve sufficient generality and to exploit the intrinsic simplicity of the Greedy Algo-
rithm, we use the following oracle, which we call MAXLE. The input to MAXLE consists
of any element a √ A . Oracle MAXLE then returns Û Ba , the largest element of b √ B
such that b ° a . (Recall that 0 √ B , so sublattice Ba is nonempty for any a √ A .) We
leave it to the interested reader which data structures can be used to efficiently implement
this oracle for a given representation of the sublattice B , such as one of those out-
lined above.

The oracle for the function w is straightforward: Its input is any element b √ B
and it returns the ( finite ) value w (b ) . As the Greedy Algorithm described below
only calls this oracle for elements b that are already known to be in B , there is no
need to include a check for the validity of b √ B . Recall that we assume that w ( 0 )
Å 0.

The output to the Greedy Algorithm exploits the sparseness of the basic solutions
to problem (P ) . Although the primal solution vector x has one component xb for
every element b √ B* ( and hence potentially up to (∏i ( m ( i ) / 1 ) ) 0 1 variables ) ,
at most (i m ( i ) of these will assume a positive value. Thus the Greedy Algorithm,
which will be shown to produce a dual pair of basic solutions to problems (P ) and
(D ) , returns a list of T pairs ( b , xb ) with b √ B* and xb is the value of the corre-
sponding variable in the solution. The number T of such pairs is determined by the
algorithm, but will be shown not to exceed (i m ( i ) . It is understood that xb 8 0 for
all b √ B* which do not appear in this list. Similarly, in the dual problem, we may
set all variables yij for which B ( i , j ) Å M or dij Å 0 to small enough, and otherwise
arbitrary, values.

The Greedy Algorithm detailed below consists of two phases. The Primal Phase repeats
the following step: identify (using the MAXLE oracle) the largest available element b
√ B* and assign the largest possible value to its variable xb . This step is repeated until
either infeasibility is detected, in which case the algorithm halts, or all demands are sat-
isfied. In the latter case, the list of (b , xb) pairs output by the algorithm defines a feasible
primal solution. The Dual Phase then traces back the sequence of elements b√ B recorded
in the Primal Phase to construct a dual solution y . Note that the w oracle is used only in
the Dual Phase.
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GREEDY ALGORITHM:

Primal Phase.

0. (Initialize):
For all i √ K and j √ do dij :Å dij;*Ai

t :Å 0; a :Å MAXLE(m) ;
1. (Main Loop):

Repeat {
if ( there exists ( i , j) with j ú a( i) and dij ú 0) then

return (Status :Å Infeasible)
else {

L :Å { l √ K : a( l) ú 0};
if L x M then {

t :Å t / 1; at :Å a;
:Å l √ L}; add (at , to the output list;t t tx min{d : x )a l ,a ( l) a

for all l √ L do :Å 0t t td d x ;l ,a ( l) l ,a ( l) a

L* :Å { l √ L : Å 0};tdl ,a ( l)

for all l √ L* do {
b :Å at ; b( l) :Å at ( l) 0 1;
b[ l] :Å MAXLE(b) ;
};

let a :Å b[ i] be any maximal element of {b[ l] : l √ L*}; h( t) :Å i;
}

}
}

until (L Å M) ;
2. (Termination):

Let T :Å t and aT/1 :Å 0; output the list (a 1 , . . . , (aT ,1 Tx ) , x ) ;a a

Dual Phase.
For all i √ K and j √ do yij :Å 0;*Ai

for t :Å T down to 1 do
output :Å w(at) 0 ( all u ú t with au(h(u)) Å at(h(u))};t ty {y :h( t) ,a (h( t)) h(u) ,a (h(u ))

return (Status Å Feasible) .

Note that, when applied to an ordinary (two-dimensional) transportation problem, the
Primal Phase reduces to the well-known North-West corner rule (with an appropriate
geographic orientation of the transportation array). More generally, the Primal Phase
reduces to the greedy algorithm of Bein et al. (1995) for multi-index transportation prob-
lems without forbidden arcs.

In the case where problem (D) is a linear optimization problem over a submodular
polyhedron, ( that is, Ai Å {0, 1} for all i √ K) , the Primal Phase amounts to sorting the
di 1 values in a nondecreasing order, consistent with the sublattice B in the following sense:
if b( i) Å 1 for all b √ B with b(h) Å 1, and if h( t) Å i and h(u) Å h , then t ú u (for
all h , i √ K) . Then, in the Dual Phase, the y-variables are sequentially maximized ac-
cording to this sequence, with :Å w(at) 0 w(at/1) (where w(aT/1) Å w(M)tyh( t) ,a (h( t))

Å 0). Thus the Greedy Algorithm just presented reduces to that of Lovász (1983) and of
Fujishige and Tomizawa (1983) in the case of submodular polyhedra.

If we only seek a primal solution, the Dual Phase may be omitted, and the Primal Phase
may be simplified by replacing all the instructions between the definition of L* and that
of h( t) ( inclusive) by the simpler instructions

t
tlet l be any element of L with d Å 0; let a( l) :Å a ( l) 0 1; a :Å MAXLE(a) .l ,a ( l)
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The instructions as originally given in the Primal Phase are required when a dual solution
is sought and B x A . Their purpose is to ensure that the choice of at/1 will be such that
there is no element a √ B with at õ a õ at/1 . As a result, all relevant dual variables yij

will be assigned a value in the Dual Phase. Any remaining dual variable will be set to
zero, thus not affecting any dual constraint.

We now briefly discuss the running time of the Greedy Algorithm. First note that, since
at least one component of a decreases at every iteration, the primal phase is finite and
terminates after T° m( i) iterations. If we only seek a primal solution and implementk( iÅ1

the simpler instructions described in the preceding paragraph, each iteration is comprised
of a single call to the MAXLE oracle and O(k) additional work. For the original instruc-
tions, observe that every index l can belong to the set L* for at most m( l) / 1 iterations,
so that the total work in the primal phase is still O(k) m( i) operations and at mostk( iÅ1

m( i) calls to the MAXLE oracle. Note that, in simple cases, such an oracle call mayk( iÅ1

require O(k) time (e.g., when B Å A) , or log(m ( i) / 1)) if binary search cankO(( iÅ1

be used on each coordinate. By storing sums ( {yh(u ) , j : all u with au(h(u)) Å j} of the
already assigned yij values, the dual phase may be implemented to run in O(k m ( i))k( iÅ1

time. Thus, and ignoring the time needed for the m ( i) MAXLE oracle calls, thek( iÅ1

running time for the whole algorithm is O(k m( i)) . Note that, for a fixed k , thisk( iÅ1

running time is linear in the number of demand data. For k ¢ 2, and when the number of
forbidden cells is, say, at most a fixed fraction of the total number of cells, this time may
be considerably less than that required for simply writing down the m( i)) costkO(∏iÅ1

coefficients, and the algorithm is effectively sublinear.

THEOREM 3.1. Let B be a sublattice of a finite product space A , with 0 8 ÚA √ B .
(1) The Greedy Algorithm returns Status Å Feasible and outputs a basic feasible

solution x if and only if problem (P) is feasible .
Let w : B ° R satisfy w(0) Å 0.
(2) The Greedy Algorithm outputs a basic optimal solution to problem (P) for all

nonnegative feasible demands d if and only if w is submodular .
(3) If problem (P) is feasible and w is submodular , then the Greedy Algorithm

outputs a basic optimal solution to problem (D) in the Dual Phase .

PROOF. First, and as already observed, the algorithm is finite and terminates after at
most m( i) iterations. Next, for any vector x √ RB , let w·x 8 (a√B* waxa and, fork( iÅ1

any section B( i , j) , let x(B( i , j)) 8 (a√B(i ,j) xa . Our proof uses the following claim.

CLAIM. Let a , b √ B and let x be a feasible solution to problem (P ) with xa ú 0 and
xb ú 0. Define

aÛb aÚb a bswap(x , a , b) 8 x / e(e / e 0 e 0 e ) ,

where e 8 min{xa , xb} and eu is the unit vector in RB associated with element u √ B
( that is , Å 1 if £ Å u , and 0 otherwise) . Then swap(x , a , b) is a feasible solution toue

£

problem (P) with component swap(x , a , b)aÛb ú xaÛb . Furthermore , if function w : B °
R is submodular , then w·swap(x , a , b) ° w·x .

PROOF OF THE CLAIM. Under the assumptions of the Claim, let x * 8 swap(x , a , b) .
By the definition of e we have x * ¢ 0. The only sections B( i , j) where x *(B( i , j)) might
differ from x(B ( i , j)) are those where a( i) x b( i) and j √ {a( i) , b( i)}. However, we
also have

aÛb aÚb a b(e / e 0 e 0 e )(B( i , j)) Å 0
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for j Å a( i) and for j Å b( i) . Hence x *(B( i , j)) Å x(B( i , j)) Å dij for all i , j , implying
that x* is a feasible solution to (P) . We have Å xaÛb/ eú xaÛb . Finally, the inequalityx*aÛb

w·swap(x , a , b) ° w·x follows from the identity w·eu Å w(u) for all u √ B and from
the submodularity of w . The proof of the Claim is complete. h

(1) Observe that the equalities x(B( i , j))/ dijÅ dij (for all i , j) , and the nonnegativity
conditions x¢ 0 and d¢ 0, are all maintained at every step of the algorithm. Also observe
that if the algorithm returns StatusÅ Feasible , then all dijÅ 0, and the output x is therefore
a feasible solution to problem (P ) . Conversely, assume that problem (P) is feasible. Given
the recursive nature of the Greedy Algorithm, we only need to show that there exists a
feasible solution x to problem (P ) in which equals j 8 i √ K}, as pre-1 1x min{d :a i,a ( i)

scribed by the Greedy Algorithm. Indeed, since problem (P) is feasible, let x be a feasible
solution to (P) with the largest possible value of If õ j, then for every i √ K1 1x . xa a

there exists bi √ B( i , a 1( i))" {a 1} with ú 0. Let x[1] 8 x and c 1 8 b 1 . For i Å 2,ixb

. . . , k , let x[ i ] 8 swap(x[ i01] , c i01 , bi ) and c i 8 c i01 Û bi . Note that ck Å a 1 and, by
repeated application of the above Claim, x[k] is a feasible solution to (P) with [k]x 1a

ú a contradiction with the definition of x . Hence we must have Å j. It remains1 1x , xa a

to show that the feasible solution output by the Greedy Algorithm is basic. For this, order
the constraints of problem (P) as their demands are satisfied during the execution of the
primal phase of the Greedy Algorithm. These constraints and the variables output intxa

the primal phase then form a triangular, nonsingular submatrix of the constraint matrix.
This matrix is a basis of the constraint matrix and the greedy primal and dual solutions
are the corresponding basic solutions.

(2) First assume that w is submodular. We only need to show that there exists an
optimal solution x to problem (P) in which equals j 8 min{di ,a (i ) : i √ K}, as pre-1xa

scribed by the Greedy Algorithm. Indeed, let x be an optimal solution to (P) with the
largest possible value of As in the proof of (1) above, we show that if õ j, then1 1x . xa a

there exists a feasible solution x[k ] to (P ) with ú and, using the last part of the[k]
1x x1a a

Claim, with w·x[k ] ° w·x , a contradiction with the definition of x . Hence we must have
Å j, proving that the Greedy Algorithm correctly fixes the value of1 1x x .a a

Conversely, assume that w is an arbitrary cost-function such that the Greedy Algorithm
constructs an optimal solution to problem (P) for all d¢ 0. For any two a , b √ B distinct
from their join and meet, we define a problem instance with dij Å 1 if j √ {a( i) , b( i)},
and 0 otherwise, for all i √ K . Thus, x* defined by Å 1 if u √ {a , b}, and 0 otherwise,x*u
is a feasible solution to (P) . However, the Greedy Algorithm applied to this problem
instance produces an optimal solution x where xu Å 1 if u √ {a Û b , a Ú b}, and 0
otherwise. Therefore, we have

w(a Ú b) / w(a Û b) Å w(x) ° w(x*) Å w(a) / w(b) .

Since this inequality holds for any a , b √ B , it shows that w is submodular.
(3) Assume that problem (P) is feasible and w is submodular. Let y denote the dual

solution constructed in the Dual Phase of the Greedy Algorithm. First, observe that y
satisfies the complementary slackness conditions since for each variable selected intxa

the Primal Phase, the corresponding constraint in problem (D) is satisfied with equality
in the Dual Phase. Since the primal solution x is optimal, it suffices to show that y is a
feasible solution to (D) .

Let the path P 8 (a 1 , a 2 , . . . , aT , aT/1 Å 0) denote the sequence of lattice elements
found in the Primal Phase of the Greedy Algorithm. Note that at ú at/1 for all t Å 1,
. . . , T , that is, the path P is a totally ordered subset of B . For any a √ B , the path element
a £ 8 Ú{at : at ¢ a} is well defined (since a 1 Å ÛB ¢ a) . We may thus define m(a)
8 dist(a , a £) , where dist(a , b) denotes the Manhattan (or rectilinear) distance between
lattice elements a and b , that is, dist(a , b) 8 Éa( i) 0 b( i)É. Thus m(a) is a non-k( iÅ1
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negative integer, bounded above by (i m ( i) , and such that m(a) Å 0 if and only if a √ P .
We shall now prove by induction on m(a) that y satisfies the constraint of (D) corre-
sponding to every element a√ B*. Indeed, we have already observed that these constraints
y(a) ° w(a) hold with equality for every a √ B with m(a) Å 0, that is, for every a
√ P . (For a Å 0, this reduces to the identity 0 Å w(0) assumed throughout.) Therefore,
assume that, for any integer r ¢ 1, all constraints of (D) corresponding to elements a*
√ B with m(a*) ° r 0 1 hold, and consider any a √ B with m(a) Å r ¢ 1. If we can find
an index t √ {1, . . . , T / 1} such that m(a Ú at) ° r 0 1 and m(a Û at) ° r 0 1, then
we have, by the inductive assumption,

t t ty(a) Å y(a Ú a ) / y(a Û a ) 0 y(a )

t t t° w(a Ú a ) / w(a Û a ) 0 w(a )

° w(a)

(where the last inequality follows from submodularity of w) , and the inductive proof is
complete. In the rest of this proof, we establish, by contradiction, the existence of such
an index t for any lattice element a √ B with m(a) Å r .

Thus, let a be a minimal element of B such that m(a) Å r ¢ 1 and for all t Å 1, . . . ,
T / 1 either m(a Ú at) ¢ r or m(a Û at) ¢ r . Since aT/1 Å 0 õ a õ ÛB Å a 1 , the path
elements au 8 Û{at : at õ a} and a £ 8 Ú{at : at ú a} are well defined and m(a)
Å dist(a , a £) . Recall that there is no lattice element b √ B such that a £/1 õ b õ a £ , for
this would contradict the definition of a £/1 as a maximal element of {b[ l] : l √ L*} in the
Primal Phase. Thus, we must have u ú £ / 1, since otherwise we would have a £/1 Å au

õ a õ a £ . Therefore, we have au õ a £/1 õ a £ , and a and a £/1 are incomparable. Since
a õ a £ and a £/1 õ a £ , we have a Û a £/1 ° a £ . Since a £/1 õ a Û a £/1 , we must then
have a Û a £/1 Å a £ (for otherwise we would again have an element b Å a Û a £/1 such
that a £/1 õ b õ a £) . Now note the property of the Manhattan distance that dist(a Ú a *,
a *) Å dist(a , a Û a *) for any lattice elements a and a * in B . Thus dist(a Ú a £/1 , a £/1)
Å dist(a , a £) Å m(a) Å r . Therefore we have m(a Ú a £/1) ° dist(a Ú a £/1 , a £/1) Å r
and m(a Û a £/1) Å m(a £) Å 0 õ r . Now, whether m(a Ú a £/1) ° r 0 1 or m(a Ú a £/1)
Å r , we have a contradiction with the definition of a ( in the latter case, with the minimality
of a) . Hence our inductive proof is complete. We have thus established that y is a feasible,
and therefore optimal, solution to the dual problem (D) . Furthermore, as shown in the
proof of part (1) above, y is basic. The proof of the theorem is complete. h

We now briefly describe some consequences of Theorem 1. First note that, for a given
feasible demand vector d , the primal solution constructed by the Greedy Algorithm does
not depend on the cost function w , provided it is submodular. See Adler et al. (1990) and
Adler and Shamir (1990) for a study of a similar property in the context of ordinary
transportation and minimum cost network flow problems.

Recall (Hoffman 1974, and Edmonds and Giles 1974) that a system of linear inequal-
ities Cy ° w is totally dual integral (TDI) if, for all integral d such that the maximum in
maxy{dy : Cy° w} is finite, the dual problem minx{wx : CTx Å d , x¢ 0} has an integral
optimal solution. A consequence of Theorem 1 is that, when w is submodular, the in-
equalities of problem (D) form a totally dual integral (TDI) linear inequality system. See
Hoffman, Edmonds and Giles, and Nemhauser and Wolsey (1988) for a discussion of
TDI systems and their properties.

4. Submodular costs and Monge properties. The main purpose of this section is to
point out and exploit the equivalence between submodularity of a function defined on a
product of k chains, and the Monge condition of a k-dimensional array. We also introduce
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the concept of submodular sequences, and discuss its relationship with that of Monge
sequences in two-dimensional arrays. In particular, we show that, for any strictly sub-
modular two-dimensional array, the class of submodular sequences coincides with that of
Monge sequences. Finally, we show a simple example of a two-dimensional array that
admits a Monge sequence, but does not satisfy the Monge condition for any permutations
of its rows and columns.

A (two-dimensional) n 1 m array C is called a (strict) Monge array if it satisfies the
following (strict) Monge condition : For all i , j , k , l with i õ k and j õ l ,

c[ i , j] / c[k , l] ° c[ i , l] / c[k , j] .

This definition is trivially equivalent to the (strict) submodularity of the function de-
fined by C on the product lattice A Å {1, . . . , n} 1 {1, . . . , m}. Furthermore, it can be
straightforwardly extended to the case where the entries c[ i , j] of C are defined only when
( i , j) belongs to a sublattice B of A . The inequality on which the above definition is based
was already exploited by the French mathematician Gaspard Monge (1781) who, in the
eighteenth century, observed that, in moving materials such as earth for building roads or
military facilities, the paths followed by different shipments should not cross (as do the
diagonal of a convex quadrangle) because the total distance travelled, and the total effort
expended, would then be larger than necessary.

The Monge condition has been reintroduced with various names in different contexts:
A square matrix satisfying the Monge condition is called a distribution matrix in Gilmore
et al. (1985), when the only defined entries in the matrix are above the diagonal ( thus
forming a sublattice of the lattice A of matrix cells) , this condition is also called the
(concave) quadrangle inequality (e.g., Yao 1980), and (as if to add to the confusion)
functions defined by such an array are sometimes called concave functions (e.g., Larmore
and Schieber 1991). Besides the above equivalent definitions, there are numerous closely
related and often weaker concepts, including totally monotone matrices (e.g., Klawe
1992) and the Gilmore-Gomory and Demidenko conditions for travelling salesman prob-
lems (Park 1991); see Aggarwal and Park (1989), Bein et al. (1995) and Burkard et al.
(1996) for details. The computer science community has seen a flurry of activity on such
concepts during the past few years. This activity was motivated in part by the seminal
paper of Aggarwal et al. (1987) on matrix searching, and also by a wide variety of
applications to problems in such areas as computational geometry (e.g., Aggarwal et al.
1987 and Aggarwal and Klawe 1990); VLSI channel routing (e.g., Aggarwal et al. 1987
and Aggarwal and Park 1989); signal quantization (Wu 1991); molecular biology (e.g.,
Sankoff and Kruskal, Eds 1983, and Larmore and Schieber 1991); dynamic lot sizing
(the Wagner-Whitin problem; see Aggarwal and Park 1993); flow shop scheduling (van
der Veen and van Dal 1991); and the travelling salesman problem (Park 1991). Because
the field is now so vast, we have only given here a few indicative references; further
references can be found therein and in Burkard et al. (1996).

The concept of Monge arrays has recently been extended to k-dimensional arrays by
Aggarwal and Park (1989a, 1989b): A k-dimensional array C satisfies the Monge con-
dition if every two-dimensional plane of C corresponding to fixed values of k 0 2 coor-
dinates satisfies the Monge condition.

The Monge condition just defined for the k-dimensional case is equivalent to the sub-
modularity of the function c : A ° R defined by the array C . Indeed, the following result
(compare Proposition 2.4 in Aggarwal and Park 1989a) is a direct rephrasing of Theorems
3.1 and 3.2 in Topkis (1978) for the case where A is a product of a finite number of
chains, as is assumed throughout the present paper:

THEOREM 4.1. A function c: A ° R is submodular if and only if it is submodular on
every two-dimensional sublattice (plane) corresponding to fixed values of k0 2 coordinates.
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As a consequence, many results on k-dimensional arrays satisfying the Monge condition
(such as in §2 of Aggarwal and Park 1989a, and in §2 in Bein et al. 1995) can be directly
derived from known results on submodular functions. In addition, the deep theory of
parametric lattice programming developed in Topkis (1978) also applies to problems
involving k-dimensional arrays satisfying the Monge condition. Conversely, the rich com-
puter science literature on Monge and related arrays, in particular the fast algorithms
developed for a variety of such problems, may also be exploited to study submodular
functions on discrete product lattices. (A case in point is the dynamic lot-sizing problem
considered in detail in Topkis (1978), and for which fast algorithms were derived in
Aggarwal and Park 1993, using the Monge condition.)

We now discuss some relations between the Monge condition for an array and the
existence of a Monge sequence . The concept of Monge sequences was introduced for
two-dimensional arrays (matrices) by Hoffman in 1963 in order to describe classes of
transportation problems that are greedily solvable. A Monge sequence for a two-dimen-
sional n 1 m array C Å (c[ i , j]) is a total ordering of the nm pairs ( i , j) such that,
whenever pair ( i , j) precedes both pair ( i , l) and pair (k , j) ,

c[ i , j] / c[k , l] ° c[ i , l] / c[k , j] .

Monge sequences have been fruitfully employed for the construction of greedy solutions
which are either feasible or optimal for two-dimensional transportation problems, among
others, in Adler et al. (1993), Adler and Shamir (1993), and Shamir and Dietrich (1990).
They also have an interesting antimatroid interpretation (Dietrich 1990) and are closely
related to notions of greedoids (see Korte et al. 1991).

Some authors (e.g., Bein et al. 1991, and Rudolf 1992) have recently investigated the
possibility of extending this concept to higher dimensions. However, at present no ap-
proach seems to clearly dominate. Hence we restrict our discussion of relations between
Monge condition and the existence of Monge sequences to the two-dimensional case. We
shall employ the following notion which arises naturally in the lattice framework: A
submodular sequence for a two-dimensional n 1 m array C Å (c[ i , j]) is a total ordering
of the nm pairs ( i , j) such that, for any i , j , k and l with ( i , j) Ú (k , l) {( i , j) ,/√
(k , l)}, at least one of the pairs ( i , j) Ú (k , l) or ( i , j) Û (k , l) precedes both pairs
( i , j) and (k , l) . For instance, the lexicographic sequence (in which ( i , j) precedes (k ,
l) if i õ k or if i Å k and j õ l) is a submodular sequence. Note that the notions of
submodular sequence and of Monge sequence directly extend to the case where the entries
of the array C are defined only when the indices ( i , j) belong to a sublattice B of A , i.e.,
when some cells of C are forbidden . In this general context, the following proposition
shows that submodular sequences and Monge sequences coincide when C satisfies the
Monge condition.

PROPOSITION 4.2. A sublattice of a two-dimensional array satisfies the Monge con-
dition if and only if every submodular sequence is a Monge sequence .

PROOF. Necessity : Assume that C is an array whose elements c[ i , j] satisfy the
Monge condition when their indices ( i , j) belong to a sublattice B of the lattice A of all
pairs of indices. Consider any submodular sequence. To prove that it is a Monge sequence,
consider any i x k and j x l such that ( i , j) , ( i , l) , (k , j) and (k , l) belong to B and
( i , j) precedes both ( i , l) and (k , j) in the sequence. Since neither ( i , l) nor (k , j) precedes
( i , j) , we cannot have {( i , l) , (k , j)} Å {( i , j) Ú (k , l) , ( i , j) Û (k , l)}. Hence we must
have {( i , j) , (k , l)} Å {( i , l) , Ú (k , j) , ( i , l) Û (k , j)} and, since the array C is Monge,
c[ i , j] / c[k , l] ° c[ i , l] / c[k , j] . This shows that the sequence is a Monge sequence
for array C .
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Sufficiency : This follows immediately by noting that a sublattice of an array is Monge
if and only if the lexicographic sequence (which is a submodular sequence) is Monge. h

It is not true that, in a Monge array, every Monge sequence is a submodular sequence.
For example, consider a constant array C (where all entries c[ i , j] have the same value):
All sequences of the pairs ( i , j) , including those that are not submodular, are Monge
sequences. However, the next result shows that Monge sequences coincide with sub-
modular sequences when C is a strict Monge array:

PROPOSITION 4.3. If a sublattice of an array C satisfies the strict Monge condition
then a total ordering of the pairs of indices ( i , j) of the elements of the sublattice is a
submodular sequence if and only if it is a Monge sequence .

PROOF. Assume that there exists a Monge sequence which is not a submodular se-
quence, that is, in which neither ( i , j) nor (k , l) precedes both ( i , l) and (k , j) , for some
i ° k and j ° l . Then at least one of the pairs ( i , l) and (k , j) precedes both ( i , j) and
(k , l) in this Monge sequence. Hence, by the definition of Monge sequences, we have
c[ i , l] / c[k , j] ° c[ i , j] / c[k , l] , contradicting the strict Monge condition for array
C . Hence every Monge sequence must be submodular. The converse follows directly from
Proposition 4.2. h

Note that the Monge condition may or may not be satisfied by a given array C depending
on the ordering of its rows and columns. On the other hand, the existence of a Monge
sequence for C is independent of such orderings. Hence, if there exists an ordering of the
rows and columns under which C satisfies the Monge condition, then there exists a Monge
sequence for C . However, the existence of a Monge sequence for C does not imply the
existence of an ordering of its rows and columns under which C is Monge. This is shown
in the following example: For n Å m Å 3, let

0 1 1
C Å 1 0 3 .S D

1 0 0

A Monge sequence is given by ((2, 2) , (1, 1) , (2, 1) , (0, 2) , (0, 0) , (1, 0) , (1, 2) ,
(2, 0) , (0, 1)) . However, as can be verified by enumeration, no ordering of its rows and
columns makes C Monge.

5. A class of problems with submodular costs. We now consider a class of problems
where the elements of each chain are resources of a certain type, all located in some*Ai

given space where distances are defined, a metric space . The lattice elements a √ A*

Å 1 ···1 correspond to sets, or clusters , of chain elements, one from each chain,* *A A1 k

and the cost of each cluster is determined by some function of the distances between the
cluster elements. For example, in a physical distribution context, the resources may include
customer sites, warehouses, trucks, truck depots, plants, etc. In a flexible manufacturing
application (Crama and Spieksma 1992), the resources are the part types, the feeder slots,
and the insertion points on the circuit board. Note that not all clusters need be feasible.
Indeed, in our model we can also deal with the case where the feasible clusters form a
sublattice B of A*.

The cost rate w(a) of cluster a reflects various motions and shipment activities within
the cluster, and is determined jointly by the pattern of such activities within the cluster
and by the distances between cluster elements. For example, w may be the total length of
the shortest spanning tree , of the shortest Hamiltonian path , or of the shortest Hamilto-
nian cycle (‘‘travelling salesman tour’’) , between all points in a cluster, modelling various
ways in which these activities may be conducted. Two other important examples are the
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weighted sum of all distances in a cluster, and the diameter , i.e., the longest distance
between any two elements of a cluster. This last example may reflect the minimum time
to perform all the within-cluster activities simultaneously. See Bandelt et al. (1994) for
a discussion of multi-index assignment problems where the points are located in a general
metric space, and Queyranne and Spieksma (1997) for extensions to multi-index trans-
portation problems.

In the following models we consider two cases in which all resources of each chain
are located on a line Li in the Euclidean space Rq : First when all lines Li are identical,*Ai

and next when all Li’s are parallel.
In the case where all resources are located on a single line we let fi be the function that

associates with each element h √ its abscissa fi (h) and assume, w.l.o.g., that each fi*Ai

is isotone, i.e., h õ l implies fi (h) ° fi ( l) . Therefore the mapping f : A* r Rk defined by
f (a) 8 ( f1(a(1)) , . . . , fk(a(k))) satisfies f (a Û b) Å f (a) Û f (b) and f (a Ú b) Å f (a)
Ú f (b) and hence is a lattice homomorphism from A* into Rk . This implies that S is a
sublattice of Rk iff f 01(S) is a sublattice of A*. Furthermore, any submodular function g
on Rk induces a submodular function w Å g + f on A* (or a sublattice thereof) defined
by w(a) Å g( f (a)) .

The next proposition establishes submodularity of interesting special cases of such
functions g including the diameter and weighted sum mentioned above.

PROPOSITION 5.1. The following functions are submodular on Rk :
( i ) g1(x) Å maxi√K xi ,
( ii ) g2(x) Å maxi ,j√KÉxi 0 xjÉ,
( iii ) g3(x) Å (i ,j√K wij( xi 0 xj) , where the wij’s are convex functions from R to R .

PROOF. ( i) Given any x , y √ Rk , assume w.l.o.g. that g1(x Û y) Å (x Û y)i Å xi .
Hence, g1(x) Å xi . Since trivially g1(x Ú y) ° g1(y) , it follows that g1(x Û y) / g1(x
Ú y) ° g1(x) / g1(y) .

( ii ) Note that g2(x) Å g1(x) / g1(0x) . Hence the submodularity of g2(x) follows
from (i) and the simple fact that a function g(x) is submodular iff g(0x) is submodular.

( iii ) Since the sum of submodular functions is submodular we only need to prove that
g(x) Å w(xi 0 xj) is submodular when i , j are a given pair of indices and w is convex.
Given x , y √ Rk we can assume w.l.o.g. that xi õ yi and xj ú yj (note that the case xi

õ yi and xj õ yj is trivial) . We then have g(x Ú y) / g(x Û y) Å w(xi 0 yj) / w(yi 0 xj)
and g(x) / g(y) Å w(xi 0 xj) / w(yi 0 yj) . Define a Å xi 0 yj , b Å yi 0 xj , c Å xi

0 xj and d Å yi 0 yj and observe that a / b Å c / d . Furthermore, the assumptions xi

õ yi and xj ú yj imply c õ a õ d and c õ b õ d . Hence, from the convexity of w we
deduce w(a) / w(b) ° w(c) / w(d) which concludes the proof. h

Note that, when all resources are located on a line, function g2 above corresponds to a
cost function w2(a) Å g2( f (a)) associated with the diameter of cluster a , while function
g3 can be specialized to the case of a sum of weighted distances of the resources of a
cluster a by setting wij( x) Å rijÉxi 0 xjÉ, with rij ¢ 0. The submodularity of the sum of
the weighted distances above was also proved in Tamir (1993). Function g3 can also be
applied to define cost functions which depend nonlinearly on the distances of the elements
of the cluster, e.g., wij( x) Å rijÉxi 0 xjÉ

p , with p ¢ 1.
Now consider the case where all the resources h √ are located on (not necessarily*Ai

distinct) parallel lines in a Euclidean space Rq as follows: Given points u 1 , . . . , uk √ Rq

and a common direction £ √ Rq the location of h √ is fi (h) Å ui / tih£, where tih*Ai

√ R . As before we assume w.l.o.g. that these locations are in the same order as the
elements of i.e., h õ l implies tih ° til . Consider the cost rate w(a) defined by a*A ,i

weighted sum of the Euclidean distances d( fi (a( i)) , fj(a( j))) between points fi (a( i))
and fj(a( j)) . The submodularity of w(a) can be proved by showing that the functions



906 M. QUEYRANNE, F. C. R. SPIEKSMA, AND F. TARDELLA

/ 3907 no29 Mp 906 Monday Nov 16 08:57 AM INF–MOR no29

wij(a) Å d( fi (a( i)) , fj(a( j))) are submodular. This latter statement is a consequence of
a simple quadrangle inequality in the plane already observed by Monge (1781) (see also
Aggarwal and Klawe 1990, and Aggarwal et al. 1987). Indeed, consider a , b √ A* and
assume a( i) õ b( i) and a( j) ú b( j) ( the case a( i) õ b( i) and a( j) õ b( j) is trivial) .
Since a( i) õ b( i) and a( j) ú b( j) belong to parallel lines Li and Lj , the line segment
joining fi (a( i)) and fj(a( j)) intersects that joining fi (b( i)) and fj(b( j)) . Hence, wij(a
Ú b) / wij(a Û b) Å d( fi (a( i)) , fj(b( j))) / d( fi (b( i)) , fj(a( j))) ° d( fi (a( i)) ,
fj(a( j))) / d( fi (b( i)) , fj(b( j))) Å wij(a) / wij(b) .

The results and methods in previous sections apply to constrained problems where some
clusters may be forbidden, provided the allowable clusters form a sublattice of A*. Through
the lattice homomorphism f mentioned above, this is the case in particular when the resources
are located on a single line and the location of the resources that form allowable clusters are
determined by distance (or precedence) constraints of the form fi (a(i)) 0 fj(a( j))° dij , for
i, j √ K and dij √ R; see Veinott (1989) and also Tamir (1993).

When function w in the above models is submodular, the corresponding problems (P)
and (D) may be solved by the Greedy Algorithm of §3. In the case where all resources
are located on a single line this algorithm proceeds along the line (say) left to right in the
Primal Phase, greedily saturating the primal variables, and then right to left in the Dual
Phase, tracing back the sequence followed in the Primal Phase and also greedily saturating
the dual variables. This algorithm takes a particularly simple form for the k-index assign-
ment problem: If the resources in each chain i are sorted from left to right on the line
then, for j Å 1, . . . , m , the j th cluster in an optimal solution simply consists of the j th
resource of each type.
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